Skip to main content
Log in

Optical force on a Rayleigh particle generated by photonic jet

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

The optical force exerted on a Rayleigh dielectric spherical particle by a photonic jet is investigated in the framework of the Rayleigh approximation. The photonic jet is generated by a plane wave illuminating a Generalized Luneburg Lens (GLLs). The electric field of the photonic jet is calculated using Discrete Dipole Approximation (DDA). The effects of wavelength of incident plane wave, focal length and radius of the GLLs on optical force are analyzed. Numerical results show that the stability of the captured particles can be controlled by changing the incident wavelength, focal length and radius of the GLLs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data underlying the results presented in this paper are not publicly available at this time but maybe obtained from the authors upon reasonable request.

References

  1. Li, R., Ren, K.F., Han, X., Wu, Z., Guo, L., Gong, S.: Analysis of radiation pressure force exerted on a biological cell induced by high-order Bessel beams using Debye series. J. Quant. Spectrosc. Radiat. Transfer 126, 69–77 (2013)

    Article  ADS  CAS  Google Scholar 

  2. Ruiz, C.M., Simpson, J.J., Shao, W., Li, J.L., Ala, G., Francomano, E., Pantoja, M.F., Bretones, A.R., Garcia, S., Travassos, X.L., et al.: Cepstral analysis of photonic nanojet-illuminated biological cells. Appl. Comput. Electromagn. Soc. J. 27(3), 215–222 (2012)

    Google Scholar 

  3. Jacassi, A., Tantussi, F., Dipalo, M., Biagini, C., Maccaferri, N., Bozzola, A., De Angelis, F.: Scanning probe photonic nanojet lithography. ACS Appl. Mater. Interfaces 9(37), 32386–32393 (2017)

    Article  CAS  PubMed  Google Scholar 

  4. Wang, X., Chen, S., Kong, M., Wang, Z., Costa, K.D., Li, R.A., Sun, D.: Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies. Lab Chip 11(21), 3656–3662 (2011)

    Article  CAS  PubMed  Google Scholar 

  5. Kasim, J., Ting, Y., Meng, Y.Y., Ping, L.J., See, A., Jong, L.L., Xiang, S.Z.: Near-field Raman imaging using optically trapped dielectric microsphere. Opt. Express 16(11), 7976–7984 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Zhan, Q.: Trapping metallic rayleigh particles with radial polarization. Opt. Express 12(15), 3377–3382 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Cui, X., Erni, D., Hafner, C.: Optical forces on metallic nanoparticles induced by a photonic nanojet. Opt. Express 16(18), 13560–13568 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Valdiviavalero, F.J., Nietovesperinas, M.: Optical forces on cylinders near subwavelength slits illuminated by a photonic nanojet. Optics Communications 294, 351–360 (2013)

    Article  ADS  CAS  Google Scholar 

  9. Mitri, F.G., Li, R., Yang, R., Guo, L., Ding, C.: Optical pulling force on a magneto-dielectric Rayleigh sphere in Bessel tractor polarized beams. J. Quant. Spectrosc. Radiat. Transfer 184, 360–381 (2016)

    Article  ADS  CAS  Google Scholar 

  10. Wang, H., Wu, X., Shen, D.: Trapping and manipulating nanoparticles in photonic nanojets. Opt. Lett. 41(7), 1652–1655 (2016)

    Article  ADS  PubMed  Google Scholar 

  11. Li, Y., Xin, H., Lei, H., Liu, L., Li, Y., Zhang, Y., Li, B. Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet. Light-Science & Applications 2016;5(12).

  12. Uenohara, T., Takaya, Y., Mizutani, Y. Laser micro machining beyond the diffraction limit using a photonic nanojet. CIRP Annals - Manufacturing Technology 2017;:S0007850617300689.

  13. Ang, A.S., Karabchevsky, A., Minin, I.V., Minin, O.V., Sukhov, S., Shalin, A.S.: Photonic hook based optomechanical nanoparticle manipulator. Sci. Rep. 8(1), 2029–2029 (2018)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  14. Mao, X., Yang, Y., Dai, H., Luo, D., Yao, B., Yan, S.: Tunable photonic nanojet formed by generalized luneburg lens. Opt. Express 23(20), 26426–26433 (2015)

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Geints, Y.E., Zemlyanov, A.A., Panina, E.K. Photonic nanojets as a versatile optical tool for wave super-localization. In: Physics of Cancer: Interdisciplinary Problems & Clinical Applications. 2016.

  16. Gu, G., Song, J., Liang, H., Zhao, M., Chen, Y., Qu, J.: Overstepping the upper refractive index limit to form ultra-narrow photonic nanojets. Sci. Rep. 7(1), 5635 (2017)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  17. Mitri, F.G.: Ultrasonic superlensing jets and acoustic-fork sheets. Phys. Lett. A 381(19), 1648–1654 (2017)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  18. Yang, J., Twardowski, P., Gerard, P., Duo, Y., Fontaine, J., Lecler, S.: Ultra-narrow photonic nanojets through a glass cuboid embedded in a dielectric cylinder. Opt. Express 26(4), 3723–3731 (2018)

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Huang, Y., Zhen, Z., Shen, Y., Min, C., Veronis, G.: Optimization of photonic nanojets generated by multilayer microcylinders with a genetic algorithm. Opt. Express 27(2), 1310–1325 (2019)

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Du, B., Xia, J., Wu, J., Zhao, J., Zhang, H.: Switchable photonic nanojet by electro-switching nematic liquid crystals. Nanomaterials 9(1), 72 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  21. Shen, X., Gu, G., Shao, L., Peng, Z., Hu, J., Bandyopadhyay, S., Liu, Y., Jiang, J., Chen, M. Photonic hook generated by twin-ellipse microcylinder. arXiv: Optics 2019;.

  22. Liu, C., Cheng, Y.: Experimental observation of engineering photonic jet array by coreshell phase diffraction grating. Opt. Lett. 45(2), 323–326 (2020)

    Article  ADS  CAS  Google Scholar 

  23. Mandal, A., Dantham, V.R.: Photonic nanojets generated by single microspheres of various sizes illuminated by resonant and non-resonant focused Gaussian beams of different waists. Journal of The Optical Society of America B-optical Physics 37(4), 977–986 (2020)

    Article  ADS  CAS  Google Scholar 

  24. Harada, Y., Asakura, T.: Radiation forces on a dielectric sphere in the Rayleigh scattering regime. Optics Communications 124(5–6), 529–541 (1996)

    Article  ADS  CAS  Google Scholar 

  25. Patra, S., Sengupta, P., Ray, A., Roy, A., Das, S.: Discrete dipole approximation for calculating optical properties of zno nanoparticles and zno-pvp composites. Ceram. Int. 44(12), 14236–14241 (2018)

    Article  CAS  Google Scholar 

  26. Draine, B.T., Flatau, P.J. User guide for the discrete dipole approximation code DDSCAT 7.3. arXiv: Computational Physics 2013;.

  27. Draine, B.T., Flatau, P.J.: Discrete-dipole approximation for scattering calculations. Journal of The Optical Society of America A-optics Image Science and Vision 11(4), 1491–1499 (1994)

    Article  ADS  Google Scholar 

  28. Schut, T.C.B., Hesselink, G., Grooth, B.G.D., Greve, J.: Experimental and theoretical investigations on the validity of the geometrical optics model for calculating the stability of optical traps. Cytometry 12(6), 479–485 (2010)

    Article  Google Scholar 

  29. F, K., Ren, Grhan, Gouesbet, Prediction of reverse radiation pressure by generalized lorenz-mie theory. Applied Optics 1996.

  30. Yang, W.H., Schatz, G.C., Van Duyne, R.P.: Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shapes. J. Chem. Phys. 103(3), 869–875 (1995)

    Article  ADS  CAS  Google Scholar 

  31. Hoekstra, A.G., Frijlink, M., Waters, L., Sloot, P.: Radiation forces in the discrete-dipole approximation. JOSA A 18(8), 1944–1953 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Collinge, M.J., Draine, B.T.: Discrete-dipole approximation with polarizabilities that account for both finite wavelength and target geometry. JOSA A 21(10), 2023–2028 (2004)

    Article  ADS  PubMed  Google Scholar 

  33. Yurkin, M.A., Maltsev, V.P., Hoekstra, A.G.: The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength. J. Quant. Spectrosc. Radiat. Transfer 106(1–3), 546–557 (2007)

    Article  ADS  CAS  Google Scholar 

  34. Draine, B.T., Flatau, P.J.: Discrete-dipole approximation for periodic targets: theory and tests. J. Opt. Soc. Am. A 25(11), 2693–2703 (2008)

    Article  ADS  Google Scholar 

  35. Loke, V.L., Meng¨u¸c, M.P., Nieminen, T.A. Discrete-dipole approximation with surface interaction: Computational toolbox for matlab. Journal of Quantitative Spectroscopy and Radiative Transfer 2011;112(11):1711–1725.

  36. Loke, V.L., Nieminen, T.A., Heckenberg, N.R., Rubinsztein-Dunlop, H.: T-matrix calculation via discrete dipole approximation, point matching and exploiting symmetry. J. Quant. Spectrosc. Radiat. Transfer 110(14–16), 1460–1471 (2009)

    Article  ADS  CAS  Google Scholar 

  37. Flatau, P.J., Draine, B.T.: Fast near field calculations in the discrete dipole approximation for regular rectilinear grids. Opt. Express 20(2), 1247 (2012)

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Cimar, T., Siler, M., Zemanek, P.: An optical nanotrap array movable over a milimetre range. Appl. Phys. B 84(1), 197–203 (2006)

    Article  ADS  Google Scholar 

  39. Burns, M.M., Fournier, J.M., Golovchenko, J.A.: Optical binding. Phys. Rev. Lett. 63(12), 1233–1236 (1989)

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Lax, M.: Multiple scattering of waves. J. Math. Phys. 2(4), 512–537 (1951)

    MathSciNet  Google Scholar 

  41. Draine, B.T., Weingartner, J.C. Radiative torques on interstellar grains: I. superthermal spinup. The Astrophysical Journal 1996;470(1).

  42. Dissertation, , Schfer, J.P. Implementierung und anwendung analytischer und numerischer verfahren zur lsung der maxwellgleichungen fr die untersuchung der lichtausbreitung in biologischem gewebe 2020;.

  43. Schafer, J., Lee, S.C., Kienle, A.: Calculation of the near fields for the scattering of electromagnetic waves by multiple in-finite cylinders at perpendicular incidence. J. Quant. Spectrosc. Radiat. Transfer 113(16), 2113–2123 (2012)

    Article  ADS  Google Scholar 

  44. Bohren, C.F., Huffman, D.R. Absorption and scattering of light by small particles. Wiley-Interscience; 1998.

  45. Lee, S.: Dependent scattering of an obliquely incident plane wave by a collection of parallel cylinders. J. Appl. Phys. 68(10), 4952–4957 (1990)

    Article  ADS  Google Scholar 

  46. Kerker, M. The scattering of light and other electromagnetic radiation. Academic Press; 1969.

  47. Glukhova, S.A., Yurkin, M.A.: Vector Bessel beams: General classification and scattering simulations. Phys. Rev. A 106, 033508 (2022)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  48. Dobler, C.P., Rosoff, J. Spss for introductory statistics: Use and interpretation (2nd ed.)/spss for intermediate statistics: Use and interpretation (2nd ed.). The American Statistician 2005;(4):352.

  49. Li, M., Yan, S., Yao, B., Liang, Y., Han, G., Zhang, P.: Optical trapping force and torque on spheroidal Rayleigh particles with arbitrary spatial orientations. Journal of The Optical Society of America A-optics Image Science and Vision 33(7), 1341–1347 (2016)

    Article  ADS  PubMed  Google Scholar 

Download references

Acknowledgements

Bojian Wei thanks the National Science Foundation for help identifying collaborators for this work.

Funding

National Natural Science Foundation of China (Grant no. 61975158) and State Key Laboratory fund (The State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Xu.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, B., Chen, R., Xu, Q. et al. Optical force on a Rayleigh particle generated by photonic jet. Opt Rev 31, 41–53 (2024). https://doi.org/10.1007/s10043-023-00857-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-023-00857-1

Navigation