skip to main content
research-article

GIPC: Fast and Stable Gauss-Newton Optimization of IPC Barrier Energy

Published:23 March 2024Publication History
Skip Abstract Section

Abstract

Barrier functions are crucial for maintaining an intersection- and inversion-free simulation trajectory but existing methods, which directly use distance can restrict implementation design and performance. We present an approach to rewriting the barrier function for arriving at an efficient and robust approximation of its Hessian. The key idea is to formulate a simplicial geometric measure of contact using mesh boundary elements, from which analytic eigensystems are derived and enhanced with filtering and stiffening terms that ensure robustness with respect to the convergence of a Project-Newton solver. A further advantage of our rewriting of the barrier function is that it naturally caters to the notorious case of nearly parallel edge-edge contacts for which we also present a novel analytic eigensystem. Our approach is thus well suited for standard second-order unconstrained optimization strategies for resolving contacts, minimizing nonlinear nonconvex functions where the Hessian may be indefinite. The efficiency of our eigensystems alone yields a 3× speedup over the standard Incremental Potential Contact (IPC) barrier formulation. We further apply our analytic proxy eigensystems to produce an entirely GPU-based implementation of IPC with significant further acceleration.

REFERENCES

  1. Allard Jérémie, Faure François, Courtecuisse Hadrien, Falipou Florent, Duriez Christian, and Kry Paul G.. 2010. Volume contact constraints at arbitrary resolution. In Proceedings of the ACM Special Interest Group on Computer Graphics and Interactive Techniques (SIGGRAPH’10). 110.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Andrews Sheldon, Erleben Kenny, and Ferguson Zachary. 2022. Contact and friction simulation for computer graphics. In Proceedings of the ACM Special Interest Group on Computer Graphics and Interactive Techniques (SIGGRAPH’22). Article 2, 124 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Apetrei Ciprian. 2014. Fast and simple agglomerative LBVH construction. In Proceedings of the Conference on Theory and Practice of Computer Graphics, Borgo Rita and Tang Wen (Eds.). Eurographics Association, 4144.Google ScholarGoogle Scholar
  4. Baraff David and Witkin Andrew P.. 1998. Large steps in cloth simulation. In Proceedings of the ACM Special Interest Group on Computer Graphics and Interactive Techniques (SIGGRAPH’98), Cunningham Steve, Bransford Walt, and Cohen Michael F. (Eds.). ACM, 4354.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bridson Robert, Fedkiw Ronald, and Anderson John. 2002. Robust treatment of collisions, contact and friction for cloth animation. In Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques. 594603.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Chitalu Floyd M., Dubach Christophe, and Komura Taku. 2020. Binary ostensibly implicit trees for fast collision detection. Comput. Graph. Forum 39, 2 (2020), 509521.Google ScholarGoogle ScholarCross RefCross Ref
  7. Ericson Christer. 2005. Bounding volume hierarchies. In Real-Time Collision Detection, Ericson Christer (Ed.). Morgan Kaufmann, San Francisco, CA, 235284.Google ScholarGoogle ScholarCross RefCross Ref
  8. Erleben Kenny. 2018. Methodology for assessing mesh-based contact point methods. ACM Trans. Graph. 37, 3 (2018), 130.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Fang Yu, Li Minchen, Jiang Chenfanfu, and Kaufman Danny M.. 2021. Guaranteed globally injective 3D deformation processing. ACM Trans. Graph. 40, 4, Article 75 (2021).Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Ferguson Zachary, Li Minchen, Schneider Teseo, Gil-Ureta Francisca, Langlois Timothy, Jiang Chenfanfu, Zorin Denis, Kaufman Danny M., and Panozzo Daniele. 2021. Intersection-free rigid body dynamics. ACM Trans. Graph. 40, 4, Article 183 (2021).Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Gao Ming, Wang Xinlei, Wu Kui, Pradhana Andre, Sifakis Eftychios, Yuksel Cem, and Jiang Chenfanfu. 2018. GPU optimization of material point methods. ACM Trans. Graph. 37, 6 (2018).Google ScholarGoogle Scholar
  12. Guennebaud Gaël, Jacob Benoît, et al. 2022. Eigen v3.4. Retrieved from http://eigen.tuxfamily.orgGoogle ScholarGoogle Scholar
  13. Harmon David, Vouga Etienne, Tamstorf Rasmus, and Grinspun Eitan. 2008. Robust treatment of simultaneous collisions. ACM Trans. Graph. 27, 3 (2008), 14.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Huang Zizhou, Tozoni Davi Colli, Gjoka Arvi, Ferguson Zachary, Schneider Teseo, Panozzo Daniele, and Zorin Denis. 2022. Differentiable solver for time-dependent deformation problems with contact. Retrieved from https://arxiv:cs.GR/2205.13643Google ScholarGoogle Scholar
  15. Irving Geoffrey., Teran Joseph., and Fedkiw Ronald. 2004. Invertible finite elements for robust simulation of large deformation. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA’04). Eurographics Association, Goslar, DEU, 131140.Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Jiang Zhongshi, Schaefer Scott, and Panozzo Daniele. 2017. Simplicial complex augmentation framework for bijective maps. ACM Trans. Graph. 36, 6 (2017).Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Kane Couro, Marsden Jerrold E., Ortiz Michael, and West Matthew. 2000. Variational integrators and the Newmark algorithm for conservative and dissipative mechanical systems. Int. J. Numer. Methods Eng. 49, 10 (2000), 12951325.Google ScholarGoogle ScholarCross RefCross Ref
  18. Kane C., Repetto E. A., Ortiz M., and Marsden J. E.. 1999. Finite element analysis of nonsmooth contact. Comput. Methods Appl. Mech. Eng. 180, 1 (1999), 126.Google ScholarGoogle ScholarCross RefCross Ref
  19. Karras Tero. 2012. Maximizing parallelism in the construction of BVHs, octrees, and k-d trees. In Proceedings of the ACM SIGGRAPH Symposium on High Performance Graphics (HPG’12), Dachsbacher Carsten, Munkberg Jacob, and Pantaleoni Jacopo (Eds.). 3337.Google ScholarGoogle Scholar
  20. Kaufman Danny M., Sueda Shinjiro, James Doug L., and Pai Dinesh K.. 2008. Staggered projections for frictional contact in multibody systems. In Proceedings of ACM SIGGRAPH Asia. 111.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Kim Theodore. 2020. A Finite Element Formulation of Baraff-Witkin Cloth. Eurographics Association, Goslar, DEU.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Kim Theodore, Goes Fernando De, and Iben Hayley. 2019. Anisotropic elasticity for inversion-safety and element rehabilitation. ACM Trans. Graph. 38, 4, Article 69 (July2019), 15 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Kim Theodore and Eberle David. 2020. Dynamic deformables: Implementation and production practicalities. In Proceedings of the ACM Special Interest Group on Computer Graphics and Interactive Techniques (SIGGRAPH’20).Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Kolda Tamara G. and Bader Brett W.. 2009. Tensor decompositions and applications. SIAM Rev. 51, 3 (Sept.2009), 455500.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Lan Lei, Kaufman Danny M., Li Minchen, Jiang Chenfanfu, and Yang Yin. 2022a. Affine body dynamics: Fast, stable & intersection-free simulation of stiff materials. Retrieved from https://2201.10022Google ScholarGoogle Scholar
  26. Lan Lei, Ma Guanqun, Yang Yin, Zheng Changxi, Li Minchen, and Jiang Chenfanfu. 2022b. Penetration-free projective dynamics on the GPU. ACM Trans. Graph. 41, 4, Article 69 (July2022), 16 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Lan Lei, Yang Yin, Kaufman Danny, Yao Junfeng, Li Minchen, and Jiang Chenfanfu. 2021. Medial IPC: Accelerated incremental potential contact with medial elastics. ACM Trans. Graph. 40, 4, Article 158 (July2021), 16 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Lauterbach Christian, Garland Michael, Sengupta Shubhabrata, Luebke David P., and Manocha Dinesh. 2009. Fast BVH construction on GPUs. Comput. Graph. Forum 28, 2 (2009), 375384.Google ScholarGoogle ScholarCross RefCross Ref
  29. Lauterbach Christian, Mo Qi, and Manocha Dinesh. 2010. gProximity: Hierarchical GPU-based operations for collision and distance queries. In Comput. Graph. Forum, Vol. 29. Wiley Online Library, 419428.Google ScholarGoogle Scholar
  30. Li Cheng, Tang Min, Tong Ruofeng, Cai Ming, Zhao Jieyi, and Manocha Dinesh. 2020. P-cloth: Interactive complex cloth simulation on multi-gpu systems using dynamic matrix assembly and pipelined implicit integrators. ACM Trans. Graph. 39, 6 (2020), 115.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Li Minchen, Ferguson Zachary, Schneider Teseo, Langlois Timothy, Zorin Denis, Panozzo Daniele, Jiang Chenfanfu, and Kaufman Danny M.. 2020a. Incremental potential contact: Intersection- and inversion-free, large-deformation dynamics. ACM Trans. Graph. 39, 4, Article 49 (2020).Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Li Minchen, Ferguson Zachary, Schneider Teseo, Langlois Timothy, Zorin Denis, Panozzo Daniele, Jiang Chenfanfu, and Kaufman Danny M.. 2020b. Technical supplement to incremental potential contact: Intersection- and inversion-free, large-deformation dynamics. ACM Trans. Graph. 39, 4 (2020).Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Li Minchen, Kaufman Danny M., and Jiang Chenfanfu. 2021. Codimensional incremental potential contact. ACM Trans. Graph. (SIGGRAPH) 40, 4, Article 170 (2021).Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Li Siwang, Pan Zherong, Huang Jin, Bao Hujun, and Jin Xiaogang. 2015. Deformable objects collision handling with fast convergence. In Computer Graphics Forum, Vol. 34. Wiley Online Library, 269278.Google ScholarGoogle Scholar
  35. Lin Huancheng, Chitalu Floyd M., and Komura Taku. 2022. Isotropic ARAP energy using cauchy-green invariants. ACM Trans. Graph. 41, 6, Article 275 (Nov.2022), 14 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Macklin Miles, Erleben Kenny, Müller Matthias, Chentanez Nuttapong, Jeschke Stefan, and Makoviychuk Viktor. 2019. Non-smooth newton methods for deformable multi-body dynamics. ACM Trans. Graph. 38, 5, Article 140 (Oct.2019), 20 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Mahmood Naureen, Ghorbani Nima, Troje Nikolaus F., Pons-Moll Gerard, and Black Michael J.. 2019. AMASS: Archive of motion capture as surface shapes. In Proceedings of the International Conference on Computer Vision. 54425451.Google ScholarGoogle ScholarCross RefCross Ref
  38. Meister Daniel, Ogaki Shinji, Benthin Carsten, Doyle Michael J., Guthe Michael, and Bittner Jiří. 2021. A survey on bounding volume hierarchies for ray tracing. Comput. Graph. Forum 40, 2 (2021), 683712.Google ScholarGoogle ScholarCross RefCross Ref
  39. Müller Matthias, Charypar David, and Gross Markus H.. 2003. Particle-based fluid simulation for interactive applications. In Proceedings of the 4th International Conference on Smart City Applications (SCA’03). The Eurographics Association, 154159.Google ScholarGoogle Scholar
  40. Müller Matthias, Chentanez Nuttapong, Kim Tae-Yong, and Macklin Miles. 2015. Air meshes for robust collision handling. ACM Trans. Graph. 34, 4 (2015), 19.Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Nocedal Jorge and Wright Stephen J.. 2006. Numerical Optimization (2nd ed.). Springer, New York, NY.Google ScholarGoogle Scholar
  42. Otaduy Miguel A., Tamstorf Rasmus, Steinemann Denis, and Gross Markus. 2009. Implicit contact handling for deformable objects. In Computer Graphics Forum, Vol. 28. Wiley Online Library, 559568.Google ScholarGoogle Scholar
  43. Pabst Simon, Koch Artur, and Straßer Wolfgang. 2010. Fast and scalable cpu/gpu collision detection for rigid and deformable surfaces. In Computer Graphics Forum, Vol. 29. Wiley Online Library, 16051612.Google ScholarGoogle Scholar
  44. Panetta Julian. 2020. Analytic Eigensystems for Isotropic Membrane Energies. Retrieved from https://arxiv.org/abs/2008.10698. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  45. Provot Xavier. 1997a. Collision and self-collision handling in cloth model dedicated to design garments. In Proceedings of the Conference on Computer Animation and Simulation, Thalmann Daniel and Panne Michiel van de (Eds.). Springer Vienna, Vienna, 177189.Google ScholarGoogle ScholarCross RefCross Ref
  46. Shi Alvin and Kim Theodore. 2023. A unified analysis of penalty-based collision energies. Proc. ACM Comput. Graph. Interact. Tech. 6, 3, Article 41 (Aug.2023), 19 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Sifakis Eftychios and Barbic Jernej. 2012. FEM simulation of 3D deformable solids: A practitioner’s guide to theory, discretization and model reduction. In Proceedings of the ACM Special Interest Group on Computer Graphics and Interactive Techniques (SIGGRAPH’12). Article 20, 50 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Sifakis Eftychios, Marino Sebastian, and Teran Joseph. 2008. Globally coupled collision handling using volume preserving impulses. In Proceedings of Symposium on Computer Animation.Google ScholarGoogle Scholar
  49. Sifakis Eftychios, Neverov Igor, and Fedkiw Ronald. 2005. Automatic determination of facial muscle activations from sparse motion capture marker data. ACM Trans. Graph. 24, 3 (July2005), 417425.Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Smith Breannan, Goes Fernando De, and Kim Theodore. 2018. Stable neo-Hookean flesh simulation. ACM Trans. Graph. 37, 2, Article 12 (Mar.2018), 15 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Smith Breannan, Goes Fernando De, and Kim Theodore. 2019. Analytic eigensystems for isotropic distortion energies. ACM Trans. Graph. 38, 1, Article 3 (Feb.2019), 15 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Tang Min, Liu Zhongyuan, Tong Ruofeng, and Manocha Dinesh. 2018a. PSCC: Parallel self-collision culling with spatial hashing on GPUs. Proc. ACM Comput. Graph. Interact. Techn. 1, 1 (2018), 118.Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Tang Min, Wang Huamin, Tang Le, Tong Ruofeng, and Manocha Dinesh. 2016. CAMA: Contact-aware matrix assembly with unified collision handling for GPU-based cloth simulation. In Proceedings of the Computer Graphics Forum, Vol. 35. Wiley Online Library, 511521.Google ScholarGoogle ScholarCross RefCross Ref
  54. Tang Min, Wang Tongtong, Liu Zhongyuan, Tong Ruofeng, and Manocha Dinesh. 2018b. I-Cloth: Incremental collision handling for GPU-based interactive cloth simulation. ACM Trans. Graph. 37, 6 (2018), 110.Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Teran Joseph, Sifakis Eftychios, Irving Geoffrey, and Fedkiw Ronald. 2005. Robust quasistatic finite elements and flesh simulation. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA’05). Association for Computing Machinery, New York, NY, 181190.Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Tissot Olivier. 2019. Iterative Methods for Solving Linear Systems on Massively Parallel Architectures. Thesis. Sorbonne Université. Retrieved from https://theses.hal.science/tel-02428348Google ScholarGoogle Scholar
  57. Verschoor Mickeal and Jalba Andrei C.. 2019. Efficient and accurate collision response for elastically deformable models. ACM Trans. Graph. 38, 2 (2019), 120.Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Wang Bolun, Ferguson Zachary, Schneider Teseo, Jiang Xin, Attene Marco, and Panozzo Daniele. 2021. A large-scale benchmark and an inclusion-based algorithm for continuous collision detection. ACM Trans. Graph. 40, 5 (2021), 188:1–188:16.Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Wang Huamin. 2021. GPU-based simulation of cloth wrinkles at submillimeter levels. ACM Trans. Graph. 40, 4 (2021), 114.Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Wang Xinlei, Tang Min, Manocha Dinesh, and Tong Ruofeng. 2018. Efficient BVH-based collision detection scheme with ordering and restructuring. Comput. Graph. Forum 37, 2 (2018), 227237.Google ScholarGoogle ScholarCross RefCross Ref
  61. Wu Botao, Wang Zhendong, and Wang Huamin. 2022. A GPU-based multilevel additive schwarz preconditioner for cloth and deformable body simulation. ACM Trans. Graph. 41, 4 (2022), 114.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. GIPC: Fast and Stable Gauss-Newton Optimization of IPC Barrier Energy

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 43, Issue 2
          April 2024
          199 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/3613549
          • Editor:
          • Carol O'Sullivan
          Issue’s Table of Contents

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 23 March 2024
          • Online AM: 27 January 2024
          • Accepted: 9 January 2024
          • Received: 25 September 2023
          Published in tog Volume 43, Issue 2

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
        • Article Metrics

          • Downloads (Last 12 months)580
          • Downloads (Last 6 weeks)260

          Other Metrics

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        Full Text

        View this article in Full Text.

        View Full Text