Skip to content
Licensed Unlicensed Requires Authentication Published online by De Gruyter February 20, 2024

The effects of synthetic and physical factors on the properties of poly(acrylic acid)-based hydrogels synthesized by precipitation polymerization technique: a review

  • Sahar Farqarazi and Manouchehr Khorasani EMAIL logo

Abstract

The polymer obtained from hydrophilic monomers can be transformed into a hydrogel via cross-linking by different cross-linkers. Hydrogels are three-dimensional networks that can absorb several times their weight and swell in water/swelling media, improving the media’s viscosity as a thickener. The cross-linked poly(acrylic acid) microparticles prepared via precipitation polymerization technique are often synthesized by radical polymerization and have carboxylic functional groups in their structure, which make the hydrogel properties such as swelling capacity, particle morphology, and viscosity be controlled by physical factors such as solvent, neutralizer, pH, pK a , zeta potential, and ionic strength of the swelling media, as well as synthetic factors including comonomer, cross-linker, and network type. In this paper, the effects of crucial factors on the synthetic and swelling steps are elaborated to facilitate the achievement of poly(acrylic acid)-based xerogels having desirable rheological properties, such as swelling/viscosity optimization, which is the primary purpose of a thickener in any swelling media.


Corresponding author: Manouchehr Khorasani, Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, 1591634311 Tehran, Iran, E-mail:

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this submitted manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: Not applicable.

References

Abbasi, R., Nodehi, A., and Atai, M. (2020). Synthesis of poly(acrylic-co-itaconic acid) through precipitation photopolymerization for glass-ionomer cements. Characterization and properties of the cementsnkers. Dent. Mater. 36: 169–183, https://doi.org/10.1016/j.dental.2020.03.006.Search in Google Scholar PubMed

Asadi, A., Najafi, M., Bouhnedi, H., and Haji Bagherian, M. (2021). Anti-bacterial microgel synthesis: sonochemical modification of carbopol for hygienic applications. Iran. J. Polym. Sci. Technol. 33: 525–535.Search in Google Scholar

Ashrafizadeh, M., Tam, K.C., Javadi, A., Abdollahi, M., Sadeghnejad, S., and Bahramian, A. (2019). Synthesis and physicochemical properties of dual-responsive acrylic acid/butyl acrylate cross-linked nanogel systems. J. Colloid Interface Sci. 556: 313–323, https://doi.org/10.1016/j.jcis.2019.08.066.Search in Google Scholar PubMed

Aswathy, S.H., Narendrakumar, U., and Manjubala, I. (2020). Commercial hydrogels for biomedical applications. Heliyon 6: e03719, https://doi.org/10.1016/j.heliyon.2020.e03719.Search in Google Scholar PubMed PubMed Central

Berardi, A., Perinelli, D.R., Bisharat, L., Sabbatini, B., Bonacucina, G., Tiboni, M., Palmieri, G.F., and Cespi, M. (2022). Factors affecting the rheological behaviour of carbomer dispersions in hydroalcoholic medium: towards the optimization of hand sanitiser gel formulations. Int. J. Pharm. 616: 121503, https://doi.org/10.1016/j.ijpharm.2022.121503.Search in Google Scholar PubMed

Berardi, A., Perinelli, D.R., Merchant, H.A., Bisharat, L., Basheti, I.A., Bonacucina, G., Cespi, M., and Palmieri, G.F. (2020). Hand sanitisers amid CoViD-19: a critical review of alcohol-based products on the market and formulation approaches to respond to increasing demand. Int. J. Pharm. 584: 119431, https://doi.org/10.1016/j.ijpharm.2020.119431.Search in Google Scholar PubMed PubMed Central

Bercea, M. (2022). Bioinspired hydrogels as platforms for life-science applications: challenges and opportunities. Polymers 14: 2365, https://doi.org/10.3390/polym14122365.Search in Google Scholar PubMed PubMed Central

Bitar, R., Cools, P., De Geyter, N., and Morent, R. (2018). Acrylic acid plasma polymerization for biomedical use. Appl. Surf. Sci. 448: 168–185, https://doi.org/10.1016/j.apsusc.2018.04.129.Search in Google Scholar

Brock Thomas, J., Creecy, C.M., McGinity, J.W., and Peppas, N.A. (2006). Synthesis and properties of lightly crosslinked poly ((meth) acrylic acid) microparticles prepared by free radical precipitation polymerization. Polym. Bull. 57: 11–20, https://doi.org/10.1007/s00289-006-0533-3.Search in Google Scholar

Bunyakan, C. and Hunkeler, D. (1999). Precipitation polymerization of acrylic acid in toluene. I: Synthesis, characterization and kinetics. Polymer 40: 6213–6224, https://doi.org/10.1016/s0032-3861(98)00836-2.Search in Google Scholar

Chaduc, I., Crépet, A., Boyron, O., Charleux, B., D’Agosto, F., and Lansalot, M. (2013). Effect of the pH on the RAFT polymerization of acrylic acid in water. Application to the synthesis of poly (acrylic acid)-stabilized polystyrene particles by RAFT emulsion polymerization. Macromolecules 46: 6013–6023, https://doi.org/10.1021/ma401070k.Search in Google Scholar

Cummings, S., Zhang, Y., Kazemi, N., Penlidis, A., and Dubé, M.A. (2016). Determination of reactivity ratios for the copolymerization of poly(acrylic acid‐co‐itaconic acid). J. Appl. Polym. Sci. 133: 44014, https://doi.org/10.1002/app.44014.Search in Google Scholar

Dai, Z., Yang, X., and Huang, W. (2007). Preparation of narrow‐disperse or monodisperse poly{[poly (ethylene glycol) methyl ether acrylate]‐co‐(acrylic acid)} microspheres with ethyleneglycol dimethacrylate as crosslinker by distillation precipitation polymerization. Polym. Int. 56: 224–230, https://doi.org/10.1002/pi.2136.Search in Google Scholar

Dalei, G. and Das, S. (2022). Polyacrylic acid-based drug delivery systems: a comprehensive review on the state-of-art. J. Drug Deliv. Sci. Technol. 78: 103988, https://doi.org/10.1016/j.jddst.2022.103988.Search in Google Scholar

Deen, G.R. and Loh, X.J. (2018). Stimuli-responsive cationic hydrogels in drug delivery applications. Gels 4: 13, https://doi.org/10.3390/gels4010013.Search in Google Scholar PubMed PubMed Central

Di Giuseppe, E., Corbi, F., Funiciello, F., Massmeyer, A., Santimano, T.N., Rosenau, M., and Davaille, A. (2015). Characterization of Carbopol® hydrogel rheology for experimental tectonics and geodynamics. Tectonophysics 642: 29–45, https://doi.org/10.1016/j.tecto.2014.12.005.Search in Google Scholar

Ding, W., Liang, H., Zhang, H., Sun, H., Geng, Z., and Xu, C. (2023). A cellulose/bentonite grafted polyacrylic acid hydrogel for highly-efficient removal of Cd (II). J. Water Proc. Eng. 51: 103414, https://doi.org/10.1016/j.jwpe.2022.103414.Search in Google Scholar

Doungsong, N. (2018). Synthesis and characterization of poly(acrylic acid) based microgels for formulation applications. Ph.D. thesis, University of Bristol.Search in Google Scholar

El-Arnaouty, M.B., Eid, M., and Abdel Ghaffar, A.M. (2015). Radiation synthesis of stimuli responsive micro-porous hydrogels for controlled drug release of aspirin. Polym.-Plast. Technol. Eng. 54: 1215–1222, https://doi.org/10.1080/03602559.2014.1003229.Search in Google Scholar

Es-haghi, H. and Bouhendi, H. (2014). The effect of double crosslinker on precipitation polymerization of poly(acrylic acid). Iran. J. Polym. Sci. Technol. 27: 150–143.Search in Google Scholar

Es-Haghi, H., Bouhendi, H., Bagheri-Marandi, G., Zohurian-Mehr, M.J., and Kabiry, K. (2010). Cross-linked poly (acrylic acid) microgels from precipitation polymerization. Polym.-Plast. Technol. Eng. 49: 1257–1264, https://doi.org/10.1080/03602559.2010.496421.Search in Google Scholar

Es-Haghi, H., Bouhendi, H., Marandi, G.B., Zohurian-Mehr, M.J., and Kabiri, K. (2012). Rheological properties of microgel prepared with long-chain crosslinkers by a precipitation polymerization method. J. Macromol. Sci. Part B 51: 880–896, https://doi.org/10.1080/00222348.2011.610232.Search in Google Scholar

Es-Haghi, H., Bouhendi, H., Marandi, G.B., Zohurian-Mehr, M.J., and Kabiri, K. (2013). An investigation into novel multifunctional cross-linkers effect on microgel prepared by precipitation polymerization. React. Funct. Polym. 73: 524–530, https://doi.org/10.1016/j.reactfunctpolym.2012.11.006.Search in Google Scholar

Fujii, M., Tsukiji, J., Nakano, T., Omura, T., Suzuki, T., and Minami, H. (2020). Formation of colloidal superstructures of disc-like particles utilizing hydrogen bonding interactions between steric stabilizers. Macromolecules 53: 11027–11032, https://doi.org/10.1021/acs.macromol.0c02015.Search in Google Scholar

Ganji, F., Vasheghani, F.S., and Vasheghani, F.E. (2010). Theoretical description of hydrogel swelling: a review. Iran. Polym. J. 19: 375–398.Search in Google Scholar

Gokmen, F.O., Yaman, E.L.İ.F., and Temel, S.İ.N.A.N. (2021). Eco-friendly polyacrylic acid based porous hydrogel for heavy metal ions adsorption: characterization, adsorption behavior, thermodynamic and reusability studies. Microchem. J. 168: 106357, https://doi.org/10.1016/j.microc.2021.106357.Search in Google Scholar

Hamri, S., Bouchaour, T., Lerari, D., Bouberka, Z., Supiot, P., and Maschke, U. (2022). Cleaning of wastewater using crosslinked poly(acrylamide-co-acrylic acid) hydrogels: analysis of rotatable bonds. Binding energy and hydrogen bonding. Gels 8: 156, https://doi.org/10.3390/gels8030156.Search in Google Scholar PubMed PubMed Central

Hassabo, A.G., Elmorsy, H.M., Gamal, N., Sedik, A., Saad, F., Hegazy, B.M., and Othman, H.A. (2023). Evaluation of various printing techniques for cotton fabrics. J. Text. Color. Polym. Sci. 20: 243–253, https://doi.org/10.21608/jtcps.2023.216842.1190.Search in Google Scholar

Hosseinzadeh, H., Abbasian, M., and Hassanzadeh, S. (2014). Synthesis, characterization and swelling behavior investigation of gelatin-g-poly(acrylic acid-co-itaconic acid). Q. J. Iran. Chem. Commun. 2: 162–231.Search in Google Scholar

Jaworski, Z., Spychaj, T., Story, A., and Story, G. (2022). Carbomer microgels as model yield-stress fluids. Rev. Chem. Eng. 38: 881–919, https://doi.org/10.1515/revce-2020-0016.Search in Google Scholar

Ji, J., Jia, L., Yan, L., and Bangal, P.R. (2010). Efficient synthesis of poly(acrylic acid) in aqueous solution via a RAFT process. J. Macromol. Sci., Part A: Pure Appl. Chem. 47: 445–451, https://doi.org/10.1080/10601321003659705.Search in Google Scholar

Kabiri, K. and Mojarad, S. (2017). Acrylic microgels: preparation and application. Basparesh 7: 71–81.Search in Google Scholar

Katime, I. and Rodríguez, E. (2001). Absorption of metal ions and swelling properties of poly(acrylic acid-co-itaconic acid) hydrogels. J. Macromol. Sci. Part A 38: 543–558, https://doi.org/10.1081/ma-100103366.Search in Google Scholar

Kazantsev, O.A., Rumyantsev, M.S., Savinova, M.V., Khokhlova, T.A., Danov, S.M., and Sadikov, A.Y. (2015). Synthesis of polyacryl thickeners by radical precipitation polymerization. Bulletin South Ural State Univ. Ser. Chem. 15: 52–58, https://doi.org/10.14529/chem150409.Search in Google Scholar

Khalid, S.H., Qadir, M.I., Massud, A., Ali, M., and Rasool, M.H. (2009). Effect of degree of cross-linking on swelling and drug release behaviour of poly(methyl methacrylate-co-itaconic acid) [P(MMA/IA)] hydrogels for site specific drug delivery. J. Drug Deliv. Sci. Technol. 19: 413, https://doi.org/10.1016/s1773-2247(09)50085-8.Search in Google Scholar

Khan, S., Vega-Chacón, J., Ruiz-Córdova, G.A., Pizan-Aquino, C., Jara-Cornejo, E.E., Torres, S.E., Jacinto-Hernández, C., López, R., Sotomayor, M.D., Picasso, G., et al.. (2023). Precipitation polymerization. Smart Polym. Nanocompos.: 121–139, https://doi.org/10.1016/b978-0-323-91611-0.00022-0.Search in Google Scholar

Kohestanian, M. and Bouhendi, H. (2015). Novel cross-linking mechanism for producing PAA microgels synthesized by precipitation polymerization method. Colloid Polym. Sci. 293: 1983–1995, https://doi.org/10.1007/s00396-015-3563-2.Search in Google Scholar

Kohestanian, M. and Bouhendi, H. (2016). Novel cross-linking mechanism with diol type cross-linkers, to prepare PAA microgels via precipitation polymerization method. Polym.-Plast. Technol. Eng. 55: 463–474, https://doi.org/10.1080/03602559.2015.1098687.Search in Google Scholar

Kohestanian, M., Bouhendi, H., and Ghiass, M. (2017). Synthesis and characterization of PAA microgels using multifunctional epoxy cross-linkers with a new cross-linking mechanism via a precipitation polymerization method. J. Polym. Res. 24: 1–12, https://doi.org/10.1007/s10965-017-1347-8.Search in Google Scholar

Kohestanian, M., Bouhendi, H., Keshavarzi, N., Mahmoudi, M., Pourjavadi, A., and Ghiass, M. (2022). Preparation of poly(acrylic acid) microgels by alcohol type cross-linkers and a comparison with other cross-linking methods. Polym. Bull. 79: 1–20, https://doi.org/10.1007/s00289-021-03878-5.Search in Google Scholar

Lee, K.M., Kim, H.J., Jung, D., Oh, Y., Lee, H., Han, C., Chang, J.Y., and Kim, H. (2018). Rapid accessible fabrication and engineering of bilayered hydrogels: revisiting the cross-linking effect on superabsorbent poly (acrylic acid). ACS Omega 3: 3096–3103, https://doi.org/10.1021/acsomega.8b00079.Search in Google Scholar PubMed PubMed Central

Li, G., Deng, Z., Cai, M., Huang, K., Guo, M., Zhang, P., Hou, X., Zhang, Y., Wang, Y., Wang, Y., et al.. (2021). A stretchable and adhesive ionic conductor based on polyacrylic acid and deep eutectic solvents. npj Flex. Electron. 5: 23, https://doi.org/10.1038/s41528-021-00118-8.Search in Google Scholar

Li, X., Zhao, Y., Li, D., Zhang, G., Long, S., and Wang, H. (2017). Hybrid dual crosslinked polyacrylic acid hydrogels with ultrahigh mechanical strength, toughness and self-healing properties via soaking salt solution. Polymer 121: 55–63, https://doi.org/10.1016/j.polymer.2017.05.070.Search in Google Scholar

Liu, Y., Zhu, Y., Mu, B., Wang, Y., Quan, Z., and Wang, A. (2021). Synthesis, characterization, and swelling behaviors of sodium carboxymethyl cellulose-g-poly (acrylic acid)/semi-coke superabsorbent. Polym. Bull. 79: 1–19, https://doi.org/10.1007/s00289-021-03545-9.Search in Google Scholar

Loiseau, J., Doërr, N., Suau, J.M., Egraz, J.B., Llauro, M.F., Ladavière, C., and Claverie, J. (2003). Synthesis and characterization of poly(acrylic acid) produced by RAFT polymerization. Application as a very efficient dispersant of CaCO3, kaolin, and TiO2. Macromolecules 36: 3066–3077, https://doi.org/10.1021/ma0256744.Search in Google Scholar

Ma, J., Yu, P., Xia, B., and An, Y. (2019). Effect of salt and temperature on molecular aggregation behavior of acrylamide polymer. e-Polymers 19: 594–606, https://doi.org/10.1515/epoly-2019-0063.Search in Google Scholar

Ma, X., Du, Z., Wang, W., Li, P., Li, Q., Zhao, Y., and Li, E. (2014). Properties of powdered associative alkali‐swellable acrylics thickeners synthesized by precipitation polymerization. J. Appl. Polym. Sci. 131: 40512, https://doi.org/10.1002/app.40512.Search in Google Scholar

Mackiewicz, M., Stojek, Z., and Karbarz, M. (2019). Synthesis of cross-linked poly (acrylic acid) nanogels in an aqueous environment using precipitation polymerization: unusually high volume change. R. Soc. Open Sci. 6: 190981, https://doi.org/10.1098/rsos.190981.Search in Google Scholar PubMed PubMed Central

Milosavljević, N.B., Milašinović, N.Z., Popović, I.G., Filipović, J.M., and Kalagasidis Krušić, M.T. (2011). Preparation and characterization of pH‐sensitive hydrogels based on chitosan, itaconic acid and methacrylic acid. Polym. Int. 60: 443–452, https://doi.org/10.1002/pi.2967.Search in Google Scholar

Minami, H., Kimura, A., Kinoshita, K., and Okubo, M. (2010). Preparation of poly(acrylic acid) particles by dispersion polymerization in an ionic liquid. Langmuir 26: 6303–6307, https://doi.org/10.1021/la904115s.Search in Google Scholar PubMed

Mirzataheri, M., Damghani, M., Moghiseh, M., and Homavand, A. (2015). Precipitation polymerization: features and applications. Basparesh 5: 74–89.Search in Google Scholar

Mojarad-Jabali, S., Kabiri, K., Karami, Z., Mastropietro, D.J., and Omidian, H. (2020). Surface cross-linked SAPs with improved swollen gel strength using diol compounds. J. Macromol. Sci. Part A 57: 62–71, https://doi.org/10.1080/10601325.2019.1670069.Search in Google Scholar

Nakan, U., Tolkyn, B., Adikanova, D., Negim, E.S.M., Yeligbayeva, G., Seilkhanov, T., Kenzhebayeva, B., and Abdiyev, K.Z. (2022). Characterization and swelling properties of copolymer poly (N, N dimethyl acrylamide-co-acrylic acid) and homopolymer poly (acrylic acid). Egypt. J. Chem. 65: 771–777.10.21608/ejchem.2021.95005.4465Search in Google Scholar

Nakano, T., Saito, N., and Minami, H. (2020). Preparation of cross-linked monodisperse poly (acrylic acid) particles by precipitation polymerization. Langmuir 36: 11957–11962, https://doi.org/10.1021/acs.langmuir.0c02060.Search in Google Scholar PubMed

Nikravan, G., Haddadi-Asl, V., and Salami-Kalajahi, M. (2019). Stimuli-responsive DOX release behavior of cross-linked poly(acrylic acid) nanoparticles. e-Polymers 19: 203–214, https://doi.org/10.1515/epoly-2019-0021.Search in Google Scholar

Nishizawa, Y., Minato, H., Inui, T., Uchihashi, T., and Suzuki, D. (2020). Nanostructures, thermoresponsiveness, and assembly mechanism of hydrogel microspheres during aqueous free-radical precipitation polymerization. Langmuir 37: 151–159, https://doi.org/10.1021/acs.langmuir.0c02654.Search in Google Scholar PubMed

Oelschlaeger, C., Marten, J., Péridont, F., and Willenbacher, N. (2022). Imaging of the microstructure of Carbopol dispersions and correlation with their macroelasticity: a micro-and macrorheological study. J. Rheol. 66: 749–760, https://doi.org/10.1122/8.0000452.Search in Google Scholar

Oh, J.K., Drumright, R., Siegwart, D.J., and Matyjaszewski, K. (2008). The development of microgels/nanogels for drug delivery applications. Prog. Polym. Sci. 33: 448–477, https://doi.org/10.1016/j.progpolymsci.2008.01.002.Search in Google Scholar

Patel, Z.J., Patel, M.C., Chatrabhuji, P.M., Patel, V.A., and Patel, D.R. (2020). Synthesis and characterization of cross-linked tri-polymers of poly acrylic acid as water thickening agents. Rasayan J. Chem. 13: 333–338, https://doi.org/10.31788/rjc.2020.1315526.Search in Google Scholar

Patten, T.E. and Matyjaszewski, K. (1998). Atom transfer radical polymerization and the synthesis of polymeric materials. Adv. Mater. 10: 901–915, https://doi.org/10.1002/(sici)1521-4095(199808)10:12<901::aid-adma901>3.3.co;2-2.10.1002/(SICI)1521-4095(199808)10:12<901::AID-ADMA901>3.0.CO;2-BSearch in Google Scholar

Plamper, F.A., Becker, H., Lanzendörfer, M., Patel, M., Wittemann, A., Ballauff, M., and Müller, A.H. (2005). Synthesis, characterization and behavior in aqueous solution of star‐shaped poly (acrylic acid). Macromol. Chem. Phys. 206: 1813–1825, https://doi.org/10.1002/macp.200500238.Search in Google Scholar

Romeo, G., Imperiali, L., Kim, J.W., Fernández-Nieves, A., and Weitz, D.A. (2012). Origin of de-swelling and dynamics of dense ionic microgel suspensions. J. Chem. Phys. 136: 124905, https://doi.org/10.1063/1.3697762.Search in Google Scholar

Sarfraz, R.M., Khan, M.U., Mahmood, A., Akram, M.R., Minhas, M.U., Qaisar, M.N., Ali, M.R., Ahmad, H., and Zaman, M. (2020). Synthesis of co-polymeric network of carbopol-g-methacrylic acid nanogels drug carrier system for gastro-protective delivery of ketoprofen and its evaluation. Polym.-Plast. Technol. Mater. 59: 1109–1123, https://doi.org/10.1080/25740881.2020.1719148.Search in Google Scholar

Sennakesavan, G., Mostakhdemin, M., Dkhar, L.K., Seyfoddin, A., and Fatihhi, S.J. (2020). Acrylic acid/acrylamide based hydrogels and its properties. A review. Polym. Degrad. Stab. 180: 109308, https://doi.org/10.1016/j.polymdegradstab.2020.109308.Search in Google Scholar

Shafiei, M., Balhoff, M., and Hayman, N.W. (2018). Chemical and microstructural controls on viscoplasticity in carbopol hydrogel. Polymer 139: 44–51, https://doi.org/10.1016/j.polymer.2018.01.080.Search in Google Scholar

Song, C., Shu, H., Zhang, X., Chen, D., Ma, Y., and Yang, W. (2021). Synthesis of poly(vinyl chloride)-co-poly (acrylic acid) by precipitation polymerization and its usage as CaCO3 modifier in rigid PVC composites. J. Macromol. Sci. Part A 58: 557–566, https://doi.org/10.1080/10601325.2021.1901592.Search in Google Scholar

Souda, P. and Sreejith, L. (2014). Environmental sensitive hydrogel for purification of waste water. Part 1: Synthesis and characterization. Polym. Bull. 71: 839–854, https://doi.org/10.1007/s00289-014-1097-2.Search in Google Scholar

Story, A., Story, G., and Jaworski, Z. (2020). Effect of carbomer microgel pH and concentration on the Herschel–Bulkley parameters. Chem. Process Eng. 41: 173–182.Search in Google Scholar

Takano, S., Ono, R., and Sakurai, K. (2023). A surprisingly narrow particle size distribution for polyacrylic acid nanospheres produced by precipitation polymerization and revealed by small-angle X-ray scattering. Polym. J. 55: 1–5, https://doi.org/10.1038/s41428-023-00836-y.Search in Google Scholar

Treat, N.D., Ayres, N., Boyes, S.G., and Brittain, W.J. (2006). A facile route to poly (acrylic acid) brushes using atom transfer radical polymerization. Macromolecules 39: 26–29, https://doi.org/10.1021/ma052001n.Search in Google Scholar

Wang, M., Zhang, P., Shamsi, M., Thelen, J.L., Qian, W., Truong, V.K., Ma, J., Hu, J., and Dickey, M.D. (2022). Tough and stretchable ionogels by in situ phase separation. Nat. Mater. 21: 359–365, https://doi.org/10.1038/s41563-022-01195-4.Search in Google Scholar PubMed

Wang, Y., Hudson, N.E., Pethrick, R.A., and Schaschke, C.J. (2019). Electrolyte effects on poly (acrylic acid)-based aircraft de-icing fluids. Processes 7: 332, https://doi.org/10.3390/pr7060332.Search in Google Scholar

Yao, J., Ravi, P., Tam, K.C., and Gan, L.H. (2004). Association behavior of poly(methyl methacrylate-b-methacrylic acid-b-methyl methacrylate) in aqueous medium. Polymer 45: 2781–2791, https://doi.org/10.1016/j.polymer.2004.02.039.Search in Google Scholar

Yin, J., Shi, Z., Jin, L., Song, X., Ji, H., Yang, Y., Sun, S., Zhao, W., and Zhao, C. (2020). Precipitated droplets in-situ cross-linking polymerization and its applications. Polym. Test. 91: 106756, https://doi.org/10.1016/j.polymertesting.2020.106756.Search in Google Scholar

Zhan, L., Qian, Q., Zhang, Y., Qi, Z., Zhang, L., Fang, H., Tang, Z., and Zhou, Y. (2022). Copper functionalized poly(acrylic acid-co-itaconic acid) nanohydrogel: its antibacterial properties on oral pathogens and biocompatibility. Colloids Surf. B: Biointerfaces 218: 112741, https://doi.org/10.1016/j.colsurfb.2022.112741.Search in Google Scholar PubMed

Zhang, H., Cheng, Y., Hou, X., Yang, B., and Guo, F. (2018). Ionic effects on the mechanical and swelling properties of a poly(acrylic acid/acrylamide) double crosslinking hydrogel. New J. Chem. 42: 9151–9158, https://doi.org/10.1039/c8nj00920a.Search in Google Scholar

Zhang, M., Cheng, Z., Zhao, T., Liu, M., Hu, M., and Li, J. (2014). Synthesis, characterization, and swelling behaviors of salt-sensitive maize bran–poly(acrylic acid) superabsorbent hydrogel. J. Agric. Food Chem. 62: 8867–8874, https://doi.org/10.1021/jf5021279.Search in Google Scholar PubMed

Zhang, R., Fu, Q., Zhou, K., Yao, Y., and Zhu, X. (2020). Ultra stretchable, tough and self-healable poly(acrylic acid) hydrogels cross-linked by self-enhanced high-density hydrogen bonds. Polymer 199: 122603, https://doi.org/10.1016/j.polymer.2020.122603.Search in Google Scholar

Zhang, R., Gao, R., Gou, Q., Lai, J., and Li, X. (2022). Precipitation polymerization: a powerful tool for preparation of uniform polymer particles. Polymers 14: 1851, https://doi.org/10.3390/polym14091851.Search in Google Scholar PubMed PubMed Central

Zhou, M., Nie, X., Zhou, L., Hou, L., Zhao, J., and Yang, Y. (2017). Study of crosslinked copolymer nanospheres with temperature resistance, salinity resistance, and deep profile control. J. Appl. Polym. Sci. 134: 45131, https://doi.org/10.1002/app.45131.Search in Google Scholar

Received: 2023-08-29
Accepted: 2023-12-30
Published Online: 2024-02-20

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 1.6.2024 from https://www.degruyter.com/document/doi/10.1515/revce-2023-0052/html
Scroll to top button