Skip to main content
Log in

Osmium and zinc isotope constraints on the origin of chromitites from the Yarlung-Zangbo ophiolites, Tibet, China

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

Chromitites or chromite mineralization of varying degrees has been discovered in the various ophiolites along the east–west trending Yarlung-Zangbo Suture Zone (YZSZ) in Tibet, China. The high-Cr variety dominates the Yarlung-Zangbo chromitites, with rare high-Al chromitites reported in the Zedang, Dongbo, and Purang ophiolites. Using empirical equations, the calculated parental magmas that formed the high-Cr YZSZ chromitites are similar to boninitic melts. 187Os/188Os ratios of chromites from the YZSZ chromitites range from 0.12525 to 0.12933, lower than the proposed present-day 187Os/188Os values for the primitive upper mantle. The TRD age variation of the YZSZ chromitites from late Neo-Proterozoic to early Triassic thus reflects that their parental magmas are derived from depleted mantle sources mixed with diachronous ancient mantle domains. The light Zn isotopic compositions of the YZSZ chromitites indicate that subducted materials (e.g., serpentinites and sediments) have contributed to the parental magma of the YZSZ chromitites. By compiling previously published data on mantle peridotites of the YZSZ ophiolites, we concluded that the YZSZ ophiolites may either have formed initially in an ultraslow-slow mid-ocean ridge environment and were then trapped in a supra-subduction zone environment, or have formed in an ultraslow-slow forearc spreading center in a supra-subduction zone environment. The Luobusa ophiolite hosting the largest chromite deposits is discriminated from the other ophiolites in the YZSZ by a thick dunitic transition zone. Previous theoretical modeling indicates that relative to olivine, only a small amount of cumulus chromites crystallize in cotectic volume ratios of around 100:1 to 100:2 of olivine to chromite, which means that large chromite bodies should always be accompanied by a significantly larger mass of dunites. Therefore, we concluded that a thick dunite transition zone or large masses of dunite of boninitic affinity is an indicator for chromitite prospecting in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abily B, Ceuleneer G (2013) The dunitic mantle-crust transition zone in the Oman ophiolite: residue of melt-rock interaction, cumulates from high-MgO melts, or both? Geology 41(1):67–70

    Article  ADS  CAS  Google Scholar 

  • Albarede F (2004) The stable isotope geochemistry of copper and zinc. Rev Mineral Geochem 55(1):409–427

    Article  CAS  Google Scholar 

  • Alves S, Schiano P, Capmas F, Allègre CJ (2002) Osmium isotope binary mixing arrays in arc volcanism. Earth Planet Sc Lett 198(3):355–369

    Article  ADS  CAS  Google Scholar 

  • Arai S (1980) Dunite—harzburgite—chromitite complexes as refractory residue in the Sangun—Yamaguchi Zone. Western Japan J Petrol 21(1):141–165

    Article  ADS  CAS  Google Scholar 

  • Arai S, Miura M (2016) Formation and modification of chromitites in the mantle. Lithos 264:277–295

    Article  ADS  CAS  Google Scholar 

  • Avcı E, Uysal I, Akmaz RM, Saka S (2017) Ophiolitic chromitites from the Kızılyüksek area of the Pozantı-Karsantı ophiolite (Adana, southern Turkey): implication for crystallization from a fractionated boninitic melt. Ore Geol Rev 90:166–183

    Article  Google Scholar 

  • Bach W, Fruh-Green GL (2010) Alteration of the oceanic lithosphere and implications for seafloor processes. Elements 6(3):173–178

    Article  ADS  CAS  Google Scholar 

  • Bai W, Zhou M, Robinson PT (1993) Possibly diamond-bearing mantle peridotites and podiform chromitites in the Luobusa and Donqiao ophiolites. Tibet Can J Earth Sci 30(8):1650–1659

    Article  ADS  Google Scholar 

  • Barnes SJ (1998) Chromite in Komatiites, 1. Magmatic controls on crystallization and composition. J Petrol 39(10):1689–1720

    Article  ADS  CAS  Google Scholar 

  • Barnes SJ, Roeder PL (2001) The range of spinel compositions in terrestrial mafic and ultramafic rocks. J Petrol 42(12):2279–2302

    Article  ADS  CAS  Google Scholar 

  • Barnes SJ, Maier WD, Curl EA (2010) Composition of the marginal rocks and sills of the Rustenburg Layered Suite, Bushveld Complex, South Africa: implications for the formation of the platinum-group element deposits. Econ Geol 105(8):1491–1511

    Article  CAS  Google Scholar 

  • Batiza R, Niu Y (1992) Petrology and magma chamber processes at the East Pacific Rise ∼ 9°30′N. J Geophys Res: Solid Earth 97(B5):6779–6797

    Article  CAS  Google Scholar 

  • Bédard É, Hébert R, Guilmette C, Lesage G, Wang CS, Dostal J (2009) Petrology and geochemistry of the Saga and Sangsang ophiolitic massifs, Yarlung Zangbo Suture Zone, Southern Tibet: evidence for an arc–back-arc origin. Lithos 113(1):48–67

    Article  ADS  Google Scholar 

  • Bezard R, Hébert R, Wang C, Dostal J, Dai J, Zhong H (2011) Petrology and geochemistry of the Xiugugabu ophiolitic massif, western Yarlung Zangbo suture zone. Tibet Lithos 125(1):347–367

    Article  ADS  CAS  Google Scholar 

  • Bigeleisen J, Mayer MG (1947) Calculation of equilibrium constants for isotopic exchange reactions. J Chem Phys 15(5):261–267

    Article  ADS  CAS  Google Scholar 

  • Bloomer SH, Hawkins JW (1987) Petrology and geochemistry of boninite series volcanic rocks from the Mariana trench. Contrib Mineral Petr 97(3):361–377

    Article  ADS  CAS  Google Scholar 

  • Borisova AY, Ceuleneer G, Kamenetsky VS, Arai S, Béjina F, Abily B, Bindeman IN, Polvé M, De Parseval P, Aigouy T, Pokrovski GS (2012) A new view on the petrogenesis of the Oman ophiolite chromitites from microanalyses of chromite-hosted inclusions. J Petrol 53(12):2411–2440

    Article  ADS  CAS  Google Scholar 

  • Boudier F, Al-Rajhi A (2014) Structural control on chromitite deposits in ophiolites: the Oman case. Geol Soc, London, Special Publications 392(1):263–277

    Article  ADS  CAS  Google Scholar 

  • Cameron WE, McCulloch MT, Walker DA (1983) Boninite petrogenesis: chemical and Nd-Sr isotopic constraints. Earth Planet Sc Lett 65(1):75–89

    Article  ADS  CAS  Google Scholar 

  • Carbotte SM, Marjanović M, Carton H, Mutter JC, Canales JP, Nedimović MR, Han S, Perfit MR (2013) Fine-scale segmentation of the crustal magma reservoir beneath the East Pacific Rise. Nat Geosci 6(10):866–870

    Article  ADS  CAS  Google Scholar 

  • Cassard D, Nicolas A, Rabinovitch M, Moutte J, Leblanc M, Prinzhofer A (1981) Structural classification of chromite pods in southern New Caledonia. Econ Geol 76(4):805–831

    Article  Google Scholar 

  • Chen H, Savage PS, Teng F, Helz RT, Moynier F (2013) Zinc isotope fractionation during magmatic differentiation and the isotopic composition of the bulk Earth. Earth Planet Sc Lett 369–370:34–42

    Article  ADS  Google Scholar 

  • Christeson GL, Goff JA, Reece RS (2019) Synthesis of oceanic crustal structure from two-dimensional seismic profiles. Rev Geophys 57(2):504–529

    Article  ADS  Google Scholar 

  • Conway TM, John SG (2014) The biogeochemical cycling of zinc and zinc isotopes in the North Atlantic Ocean. Global Biogeochem Cy 28(10):1111–1128

    Article  ADS  CAS  Google Scholar 

  • Conway TM, John SG (2015) The cycling of iron, zinc and cadmium in the North East Pacific Ocean – insights from stable isotopes. Geochim Cosmochim Ac 164:262–283

    Article  ADS  CAS  Google Scholar 

  • Dai J, Wang C, Hébert R, Li Y, Zhong H, Guillaume R, Bezard R, Wei Y (2011) Late Devonian OIB alkaline gabbro in the Yarlung Zangbo suture zone: remnants of the Paleo-Tethys? Gondwana Res 19(1):232–243

    Article  ADS  CAS  Google Scholar 

  • Dai J, Wang C, Polat A, Santosh M, Li Y, Ge Y (2013) Rapid forearc spreading between 130–120 Ma: evidence from geochronology and geochemistry of the Xigaze ophiolite, southern Tibet. Lithos 172:1–16

    Article  ADS  Google Scholar 

  • Day JMD, Walker RJ, Warren JM (2017) 186Os–187Os and highly siderophile element abundance systematics of the mantle revealed by abyssal peridotites and Os-rich alloys. Geochim Cosmochim Ac 200:232–254

    Article  ADS  CAS  Google Scholar 

  • Debret B, Beunon H, Mattielli N, Andreani M, Ribeiro Da Costa I, Escartin J (2018) Ore component mobility, transport and mineralization at mid-oceanic ridges: a stable isotopes (Zn, Cu and Fe) study of the Rainbow massif (Mid-Atlantic Ridge 36°14′N). Earth Planet Sc Lett 503:170–180

    Article  ADS  CAS  Google Scholar 

  • Dilek Y, Furnes H (2011) Ophiolite genesis and global tectonics: geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geol Soc Am Bull 123(3/4):387–411

    Article  CAS  Google Scholar 

  • Dobson PF, Blank JG, Maruyama S, Liou JG (2006) Petrology and geochemistry of boninite-series volcanic rocks, Chichi-Jima, Bonin Islands. Japan Int Geol Rev 48(8):669–701

    Article  Google Scholar 

  • Doucet LS, Mattielli N, Ionov DA, Debouge W, Golovin AV (2016) Zn isotopic heterogeneity in the mantle: a melting control? Earth Planet Sc Lett 451:232–240

    Article  ADS  CAS  Google Scholar 

  • Doucet LS, Laurent O, Ionov DA, Mattielli N, Debaille V, Debouge W (2020) Archean lithospheric differentiation: Insights from Fe and Zn isotopes. Geology 48(10):1028–1032

    Article  ADS  CAS  Google Scholar 

  • Einsele G, Liu B, Dürr S, Frisch W, Liu G, Luterbacher HP, Ratschbacher L, Ricken W, Wendt J, Wetzel A (1994) The Xigaze forearc basin: evolution and facies architecture (Cretaceous, Tibet). Sediment Geol 90(1):1–32

    Article  ADS  Google Scholar 

  • Escrig S, Capmas F, Dupré B, Allègre CJ (2004) Osmium isotopic constraints on the nature of the DUPAL anomaly from Indian mid-ocean-ridge basalts. Nature 431(7004):59–63

    Article  ADS  PubMed  CAS  Google Scholar 

  • Escrig S, Schiano P, Schilling J, Allègre C (2005) Rhenium–osmium isotope systematics in MORB from the Southern Mid-Atlantic Ridge (40°–50° S). Earth Planet Sc Lett 235(3):528–548

    Article  ADS  CAS  Google Scholar 

  • Falloon TJ, Crawford AJ (1991) The petrogenesis of high-calcium boninite lavas dredged from the northern Tonga ridge. Earth Planet Sc Lett 102(3):375–394

    Article  ADS  CAS  Google Scholar 

  • Fang S, Huang J, Zhang X, Ionov DA, Zhao Z, Huang F (2022) Zinc isotope fractionation in mantle rocks and minerals, and a revised δ66Zn value for the bulk silicate earth. Geochim Cosmochim Ac 338:79–92

    Article  ADS  CAS  Google Scholar 

  • Feng G, Yang J, Dilek Y, Liu F, Xiong F (2017) Petrological and Re-Os isotopic constraints on the origin and tectonic setting of the Cuobuzha peridotite, Yarlung Zangbo suture zone, southwest Tibet. China Lithosphere-Us 10(1):95–108

    Google Scholar 

  • Gannoun A, Burton KW, Parkinson IJ, Alard O, Schiano P, Thomas LE (2007) The scale and origin of the osmium isotope variations in mid-ocean ridge basalts. Earth Planet Sc Lett 259(3):541–556

    Article  ADS  CAS  Google Scholar 

  • Girardeau J, Mercier JCC, Xibin W (1985) Petrology of the mafic rocks of the Xigaze ophiolite. Tibet Contrib Mineral Petr 90(4):309–321

    Article  ADS  CAS  Google Scholar 

  • Golowin R, Portnyagin M, Hoernle K, Sobolev A, Kuzmin D, Werner R (2017) The role and conditions of second-stage mantle melting in the generation of low-Ti tholeiites and boninites: the case of the Manihiki Plateau and the Troodos ophiolite. Contrib Mineral Petr 172(11):104

    Article  ADS  Google Scholar 

  • Gong X, Xu J, Shi R, Su B, Huang Q, Huang X (2021) Subduction initiation-induced rapid emplacement of garnet-bearing peridotites at a nascent forearc: petrological and Os-Li isotopic evidence from the Purang ophiolite. Tibet GSA Bulletin 134(3–4):722–738

    Google Scholar 

  • González-Jiménez JM, Griffin WL, Proenza JA, Gervilla F, O’Reilly SY, Akbulut M, Pearson NJ, Arai S (2014) Chromitites in ophiolites: how, where, when, why? Part II. Crystallization Chromitites Lithos 189(2014):140–158

    Article  Google Scholar 

  • Guo G, Yang J, Liu X, Xu X, Liu Z, Ba D (2015) Mid-ocean ridge (MOR) and suprasubduction zone (SSZ) geological events in the Yarlung Zangbo suture zone: evidence from the mineral record of mantle peridotites. J Asian Earth Sci 110:33–54

    Article  ADS  Google Scholar 

  • Harmer RE, Sharpe MR (1985) Field relations and strontium isotope systematics of the marginal rocks of the eastern Bushveld Complex. Econ Geol 80(4):813–837

    Article  CAS  Google Scholar 

  • Herzberg C (2004) Geodynamic information in peridotite petrology. J Petrol 45(12):2507–2530

    Article  ADS  CAS  Google Scholar 

  • Hu W, Zhou M, Yudovskaya MA, Vikentyev IV, Malpas J, Zhang P (2022) Trace elements in chromite as indicators of the origin of the giant podiform chromite deposit at Kempirsai. Kazakhstan Econ Geol 117(7):1629–1655

    Article  Google Scholar 

  • Huang J, Zhang X, Chen S, Tang L, Wörner G, Yu H, Huang F (2018) Zinc isotopic systematics of Kamchatka-Aleutian arc magmas controlled by mantle melting. Geochim Cosmochim Ac 238:85–101

    Article  ADS  CAS  Google Scholar 

  • Jenkins MC, Mungall JE (2018) Genesis of the Peridotite Zone, Stillwater Complex, Montana, USA. J Petrol 59(11):2157–2189

    Article  ADS  CAS  Google Scholar 

  • Kamenetsky VS, Crawford AJ, Meffre S (2001) Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. J Petrol 42(4):655–671

    Article  ADS  CAS  Google Scholar 

  • Kanayama K, Umino S, Ishizuka O (2012) Eocene volcanism during the incipient stage of Izu-Ogasawara Arc: geology and petrology of the Mukojima Island Group, the Ogasawara Islands. Isl Arc 21(4):288–316

    Article  CAS  Google Scholar 

  • Kelemen PB, Dick HJ (1995) Focused melt flow and localized deformation in the upper mantle: juxtaposition of replacive dunite and ductile shear zones in the Josephine peridotite, SW Oregon. J Geophys Res 100(B1):423–438

    Article  ADS  Google Scholar 

  • Kent GM, Singh SC, Harding AJ, Sinha MC, Orcutt JA, Barton PJ, White RS, Bazin S, Hobbs RW, Tong CH, Pye JW (2000) Evidence from three-dimensional seismic reflectivity images for enhanced melt supply beneath mid-ocean -ridge discontinuities. Nature 406(6796):614–618

    Article  ADS  PubMed  CAS  Google Scholar 

  • Lago BL, Rabinowicz M, Nocolas A (1982) Podiform chromite ore bodies: a genetic model. J Petrol 23(1):103–125

    Article  ADS  CAS  Google Scholar 

  • Lai S, Yang J, Dilek Y, Xiong F, Jiang R, Chen Y (2018) Petrological and Os isotopic characteristics of Zedong peridotites in the Eastern Yarlung-Zangbo Suture in Tibet. Acta Geol Sin-English Edition 92(2):442–461

    Article  CAS  Google Scholar 

  • Lambert DD, Walker RJ, Morgan JW, Shirey SB, Carlson RW, Zientek ML, Lipin BR, Koski MS, Cooper RL (1994) Re—Os and Sm—Nd isotope geochemistry of the Stillwater Complex, Montana: implications for the petrogenesis of the JM Reef. J Petrol 35(6):1717–1753

    Article  ADS  CAS  Google Scholar 

  • Langa MM, Jugo PJ, Leybourne MI, Grobler DF, Adetunji J, Skogby H (2020) Chromite chemistry of a massive chromitite seam in the northern limb of the Bushveld Igneous Complex, South Africa: correlation with the UG-2 in the eastern and western limbs and evidence of variable assimilation of footwall rocks. Miner Deposita 56(1):91–112

    Google Scholar 

  • Le Roux V, Dasgupta R, Lee CTA (2011) Mineralogical heterogeneities in the Earth’s mantle: constraints from Mn Co, Ni and Zn partitioning during partial melting. Earth Planet Sc Lett 307(3–4):395–408

    Article  ADS  Google Scholar 

  • Leblanc M, Violette JF (1983) Distribution of aluminum-rich and chromium-rich chromite pods in ophiolite peridotites. Econ Geol 78(2):293–301

    Article  CAS  Google Scholar 

  • Li Y, Kimura J, Machida S, Ishii T, Ishiwatari A, Maruyama S, Qiu H, Ishikawa T, Kato Y, Haraguchi S, Takahata N, Hirahara Y, Miyazaki T (2013) High-Mg Adakite and Low-Ca Boninite from a Bonin Fore-arc Seamount: implications for the reaction between slab melts and depleted mantle. J Petrol 54(6):1149–1175

    Article  ADS  CAS  Google Scholar 

  • Lian D, Yang J, Robinson PT, Liu F, Xiong F, Zhang L, Gao J, Wu W (2016) Tectonic Evolution of the Western Yarlung Zangbo Ophiolitic Belt, Tibet: Implications from the Petrology, Mineralogy, and Geochemistry of the Peridotites. The Journal of Geology 124(3):353–376

    Article  ADS  CAS  Google Scholar 

  • Lian D, Yang J, Liu F, Wu W, Zhang L, Zhao H, Huang J (2017) Geochemistry and tectonic significance of the Gongzhu peridotites in the northern branch of the western Yarlung Zangbo ophiolitic belt, western Tibet. Miner Petrol 111(5):729–746

    Article  CAS  Google Scholar 

  • Lian D, Yang J, Dilek Y, Rocholl A (2018) Mineralogy and geochemistry of peridotites and chromitites in the Aladag Ophiolite (S Turkey): melt evolution of the Cretaceous Neotethyan mantle. J Geol Soc London 178(1):1–18

    Google Scholar 

  • Lian D, Liu F, Yang J, Xu Z, Wu W (2021) Fingerprints of the Kerguelen mantle plume in southern Tibet: evidence from early Cretaceous magmatism in the Tethyan Himalaya. J Geol 129(2):207–231

    Article  ADS  CAS  Google Scholar 

  • Little SH, Vance D, Siddall M, Gasson E (2013) A modeling assessment of the role of reversible scavenging in controlling oceanic dissolved Cu and Zn distributions. Global Biogeochem Cy 27(3):780–791

    Article  ADS  CAS  Google Scholar 

  • Little SH, Vance D, Walker-Brown C, Landing WM (2014) The oceanic mass balance of copper and zinc isotopes, investigated by analysis of their inputs, and outputs to ferromanganese oxide sediments. Geochim Cosmochim Ac 125:673–693

    Article  ADS  CAS  Google Scholar 

  • Liu Z, Buck WR (2023) The spreading rate dependence of the distribution of axial magma lenses along mid-ocean ridges. Proc Natl Acad Sci 120(1):e2080919176

    Article  Google Scholar 

  • Liu C, Wu F, Chu Z, Ji W, Yu L, Li J (2012) Preservation of ancient Os isotope signatures in the Yungbwa ophiolite (southwestern Tibet) after subduction modification. J Asian Earth Sci 53:38–50

    Article  ADS  Google Scholar 

  • Liu C, Zhang C, Yang L, Zhang L, Ji W, Wu F (2014) Formation of gabbronorites in the Purang ophiolite (SW Tibet) through melting of hydrothermally altered mantle along a detachment fault. Lithos 205:127–141

    Article  ADS  CAS  Google Scholar 

  • Liu F, Yang J, Dilek Y, Xu Z, Xu X, Liang F, Chen S, Lian D (2015) Geochronology and geochemistry of basaltic lavas in the Dongbo and Purang ophiolites of the Yarlung-Zangbo suture zone: plume-influenced continental margin-type oceanic lithosphere in southern Tibet. Gondwana Res 27(2):701–718

    Article  ADS  CAS  Google Scholar 

  • Liu S, Wang Z, Li S, Huang J, Yang W (2016a) Zinc isotope evidence for a large-scale carbonated mantle beneath eastern China. Earth Planet Sc Lett 444:169–178

    Article  ADS  CAS  Google Scholar 

  • Liu T, Wu F, Zhang L, Zhai Q, Liu C, Ji W, Zhang C, Xu Y (2016b) Zircon U-Pb geochronological constraints on rapid exhumation of the mantle peridotite of the Xigaze ophiolite, southern Tibet. Chem Geol 443:67–86

    Article  ADS  CAS  Google Scholar 

  • Liu F, Dilek Y, Xie Y, Yang J, Lian D (2017) Melt evolution of upper mantle peridotites and mafic dikes in the northern ophiolite belt of the western Yarlung Zangbo suture zone (southern Tibet). Lithosphere-Us 10(1):109–132

    Article  ADS  Google Scholar 

  • Liu C, Xu Y, Wu F (2018) Limited recycling of crustal osmium in forearc mantle during slab dehydration. Geology 46(3):239–242

    Article  ADS  CAS  Google Scholar 

  • Liu S, Liu P, Lv Y, Wang Z, Dai J (2019a) Cu and Zn isotope fractionation during oceanic alteration: implications for oceanic Cu and Zn cycles. Geochim Cosmochim Ac 257:191–205

    Article  ADS  CAS  Google Scholar 

  • Liu T, Wu F, Liu C, Zhang C, Ji W, Xu Y (2019b) Reconsideration of Neo-Tethys evolution constrained from the nature of the Dazhuqu ophiolitic mantle, southern Tibet. Contrib Mineral Petr 174(3):23

    Article  ADS  Google Scholar 

  • Liu T, Wu F, Liu C, Eyuboglu Y, Zhu D, Zhang C, Ji W, Xu Y, Zhang Z (2020) Testing oceanic crust–mantle decoupling by Sr–Nd–Hf–Os isotopes of Neo-Tethyan ophiolites. Lithos 376–377:105757

    Article  Google Scholar 

  • Liu C, Wu F, Liu T, Zhang C, Zhang W, Zhang Z, Zhang Z, Wei W, Lin Y (2021) An origin of ultraslow spreading ridges for the Yarlung-Tsangpo ophiolites. Fundam Res 2(1):74–83

    Article  Google Scholar 

  • Luguet A, Pearson G (2019) Dating mantle peridotites using Re-Os isotopes: the complex message from whole rocks, base metal sulfides, and platinum group minerals. Am Mineral 104(2):165–189

    Article  ADS  Google Scholar 

  • Macris CA, Manning CE, Young ED (2015) Crystal chemical constraints on inter-mineral Fe isotope fractionation and implications for Fe isotope disequilibrium in San Carlos mantle xenoliths. Geochim Cosmochim Ac 154:168–185

    Article  ADS  CAS  Google Scholar 

  • Maier WD, Arndt NT, Curl EA (2000) Progressive crustal contamination of the Bushveld Complex: evidence from Nd isotopic analyses of the cumulate rocks. Contrib Mineral Petr 140(3):316–327

    Article  ADS  CAS  Google Scholar 

  • Maier WD, Barnes SJ, Karykowski BT (2016) A chilled margin of komatiite and Mg-rich basaltic andesite in the western Bushveld Complex. South Africa Contrib Mineral Petr 171(6):1–22

    CAS  Google Scholar 

  • Malpas J, Zhou M, Robinson PT, Reynolds PH (2003) Geochemical and geochronological constraints on the origin and emplacement of the Yarlung Zangbo ophiolites, Southern Tibet. Geol Soc, London, Special Publications 218(1):191–206

    Article  ADS  CAS  Google Scholar 

  • Maurel C, Maurel P (1982) Étude expérimentale de la distribution de l’aluminium entre bain silicaté basique et spinelle chromifère. Implications pétrogénétiques: teneur en chrome des spinelles. Bull Minéral 105:197–202

    Article  CAS  Google Scholar 

  • Meisel T, Walker RJ, Irving AJ, Lorand J (2001) Osmium isotopic compositions of mantle xenoliths: a global perspective. Geochim Cosmochim Ac 65(8):1311–1323

    Article  ADS  CAS  Google Scholar 

  • Melcher F, Grum W, Simon G, Thalhammer TV, Stumpfl EF (1997) Petrogenesis of the ophiolitic giant chromite deposits of Kempirsai, Kazakhstan: a study of solid and fluid inclusions in chromite. J Petrol 38(10):1419–1458

    Article  ADS  CAS  Google Scholar 

  • Melcher F, Grum W, Thalhammer TV, Thalhammer OAR (1999) The giant chromite deposits at Kempirsai, Urals: constraints from trace element (PGE, REE) and isotope data. Miner Deposita 34(3):250–272

    Article  ADS  CAS  Google Scholar 

  • Melson WG, O’Hearn T, Jarosewich E (2002) A data brief on the Smithsonian Abyssal Volcanic Glass Data File. Geochem Geophys Geosyst 3(4):1–11

    Article  Google Scholar 

  • Meng Y, Xiong F, Xu Z, Ma X (2019) Petrogenesis of Late Cretaceous mafic enclaves and their host granites in the Nyemo region of southern Tibet: implications for the tectonic-magmatic evolution of the Central Gangdese Belt. J Asian Earth Sci 176:27–41

    Article  ADS  Google Scholar 

  • Miura M, Arai S, Ahmed AH, Mizukami T, Okuno M, Yamamoto S (2012) Podiform chromitite classification revisited: a comparison of discordant and concordant chromitite pods from Wadi Hilti, northern Oman ophiolite. J Asian Earth Sci 59:52–61

    Article  ADS  Google Scholar 

  • Moutte J (1982) Chromite deposits of the Tiebaghi ultramafic massif. New Caledonia Econ Geol 77(3):576–591

    Article  CAS  Google Scholar 

  • Moynier F, Vance D, Fujii T, Savage P (2017) The isotope geochemistry of zinc and copper. Rev Mineral Geochem 82(1):543–600

    Article  CAS  Google Scholar 

  • Nicolas A, Girardeau J, Marcoux J, Dupre B, Xibin W, Yougong C, Haixiang Z, Xuchang X (1981) The Xigaze ophiolite (Tibet): a peculiar oceanic lithosphere. Nature 294:414–417

    Article  ADS  Google Scholar 

  • Niu Y, Langmuir CH, Kinzler RJ (1997) The origin of abyssal peridotites: a new perspective. Earth Planet Sc Lett 152(1):251–265

    Article  ADS  CAS  Google Scholar 

  • Niu X, Yang J, Dilek Y, Xu J, Li J, Chen S, Feng G, Liu F, Xiong F, Liu Z (2015) Petrological and Os isotopic constraints on the origin of the Dongbo peridotite massif, Yarlung Zangbo Suture Zone, Western Tibet. J Asian Earth Sci 110(2015):72–84

    Article  ADS  Google Scholar 

  • Pagé P, Barnes S (2009) Using trace elements in chromites to constrain the origin of podiform chromitites in the Thetford Mines ophiolite, Québec, Canada. Econ Geol 104(7):997–1018

    Article  Google Scholar 

  • Pearce JA, Reagan MK (2019) Identification, classification, and interpretation of boninites from Anthropocene to Eoarchean using Si-Mg-Ti systematics. Geosphere 15(4):1008–1037

    Article  ADS  Google Scholar 

  • Pichat S, Douchet C, Albarède F (2003) Zinc isotope variations in deep-sea carbonates from the eastern equatorial Pacific over the last 175 ka. Earth Planet Sc Lett 210(1–2):167–178

    Article  ADS  CAS  Google Scholar 

  • Pons M, Quitté G, Fujii T, Rosing MT, Reynard B, Moynier F, Douchet C, Albarède F (2011) Early Archean serpentine mud volcanoes at Isua, Greenland, as a niche for early life. Proc Natl Acad Sci 108(43):17639–17643

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • Rizeli ME, Beyarslan M, Wang K, Bingöl AF (2016) Mineral chemistry and petrology of mantle peridotites from the Guleman ophiolite (SE Anatolia, Turkey): evidence of a forearc setting. J Afr Earth Sci 123:392–402

    Article  CAS  Google Scholar 

  • Robinson PT, Bai W, Malpas J, Yang J, Zhou M, Fang Q, Hu X, Cameron S, Staudigel H (2004) Ultra-high pressure minerals in the Luobusa Ophiolite, Tibet, and their tectonic implications. Spec Publ-Geol Soc London 226(1):247–272

    Article  Google Scholar 

  • Rollinson H (2005) Chromite in the mantle section of the Oman ophiolite: a new genetic model. Isl Arc 14(4):542–550

    Article  CAS  Google Scholar 

  • Rollinson H (2008) The geochemistry of mantle chromitites from the northern part of the Oman ophiolite: inferred parental melt compositions. Contrib Miner Petrol 156(3):273–288

    Article  ADS  CAS  Google Scholar 

  • Rollinson H (2019) Dunites in the mantle section of the Oman ophiolite – the boninite connection. Lithos 334–335:1–7

    Article  ADS  Google Scholar 

  • Rollinson H, Mameri L, Barry T (2018) Polymineralic inclusions in mantle chromitites from the Oman ophiolite indicate a highly magnesian parental melt. Lithos 310–311:381–391

    Article  ADS  Google Scholar 

  • Rosman KJR, Taylor PDP (1998) Isotopic compositions of the elements (technical report): commission on atomic weights and isotopic abundances. Pure Appl Chem 70:217–235

    Article  CAS  Google Scholar 

  • Rui H, Yang J, Llanes Castro AI, Zheng J, Lian D, Wu W, Valdes Mariño Y (2022) Ti-poor high-Al chromitites of the Moa-Baracoa ophiolitic massif (eastern Cuba) formed in a nascent forearc mantle. Ore Geol Rev 144:104847

    Article  Google Scholar 

  • Schauble EA (2004) Applying stable isotope fractionation theory to new systems. Rev Miner Geochem 55(1):65–111

    Article  CAS  Google Scholar 

  • Schilling J, Zapac M, Evans R, Johnston T, White W, Devine J, Kingsley R (1983) Petrologic and geochemical variations along the Mid-Atlantic Ridge from 29 degrees N to 73 degrees N. Am J Sci 283(6):510–586

    Article  ADS  CAS  Google Scholar 

  • Senda R, Shimizu K, Suzuki K (2016) Ancient depleted mantle as a source of boninites in the Izu-Bonin-Mariana arc: evidence from Os isotopes in Cr-spinel and magnetite. Chem Geol 439:110–119

    Article  ADS  CAS  Google Scholar 

  • Shirey SB, Walker RJ (1998) The Re-Os isotope system in cosmochemistry and high-temperature geochemistry. Annu Rev Earth Planet Sci 26(1):423–500

    Article  ADS  CAS  Google Scholar 

  • Singh SC, Crawford WC, Carton H, Seher T, Combier V, Cannat M, Pablo Canales J, Düsünür D, Escartin J, Miguel Miranda J (2006) Discovery of a magma chamber and faults beneath a Mid-Atlantic Ridge hydrothermal field. Nature 442(7106):1029–1032

    Article  ADS  PubMed  CAS  Google Scholar 

  • Sobolev AV, Danyushevsky LV (1994) Petrology and geochemistry of boninites from the North termination of the Tonga Trench: constraints on the generation conditions of primary high-Ca boninite magmas. J Petrol 35(5):1183–1211

    Article  ADS  Google Scholar 

  • Sossi PA, Eggins SM, Nesbitt RW, Nebel O, Hergt JM, Campbell IH, O’Neill HSC, Van Kranendonk M, Davies DR (2016) Petrogenesis and Geochemistry of Archean Komatiites. J Petrol 57(1):147–184

    Article  ADS  CAS  Google Scholar 

  • Sossi PA, Nebel O, O’Neill HSC, Moynier F (2018) Zinc isotope composition of the Earth and its behaviour during planetary accretion. Chem Geol 477:73–84

    Article  ADS  CAS  Google Scholar 

  • Spandler C, Pirard C (2013) Element recycling from subducting slabs to arc crust: a review. Lithos 170–171:208–223

    Article  ADS  Google Scholar 

  • Stowe CW (1994) Compositions and tectonic settings of chromite deposits through time. Econ Geol 89(3):528–546

    Article  CAS  Google Scholar 

  • Su B, Zhou M, Jing J, Robinson PT, Chen C, Xiao Y, Liu X, Shi R, Lenaz D, Hu Y (2019) Distinctive melt activity and chromite mineralization in Luobusa and Purang ophiolites, southern Tibet: constraints from trace element compositions of chromite and olivine. Sci Bull 64(2):108–121

    Article  CAS  Google Scholar 

  • Sun S, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc, London, Spec Publ 42(1):313–345

    Article  ADS  Google Scholar 

  • Suzuki K, Senda R, Shimizu K (2011) Osmium behavior in a subduction system elucidated from chromian spinel in Bonin Island beach sands. Geology 39(11):999–1002

    Article  ADS  CAS  Google Scholar 

  • Tapponnier P, Mercier JL, Proust F, Andrieux J, Armijo R, Bassoullet JP, Brunel M, Burg JP, Colchen M, Dupré B (1981) The Tibetan side of the India-Eurasia collision. Nature 294:405–410

    Article  ADS  Google Scholar 

  • Taylor RN, Nesbitt RW, Vidal P, Harmon RS, Auvray B, Croudace IW (1994) Mineralogy, chemistry, and genesis of the boninite series volcanics, Chichijima, Bonin Islands. Japan J Petrol 35(3):577–617

    Article  ADS  CAS  Google Scholar 

  • Telus M, Dauphas N, Moynier F, Tissot FLH, Teng F, Nabelek PI, Craddock PR, Groat LA (2012) Iron, zinc, magnesium and uranium isotopic fractionation during continental crust differentiation: the tale from migmatites, granitoids, and pegmatites. Geochim Cosmochim Ac 97:247–265

    Article  ADS  CAS  Google Scholar 

  • Thayer TP (1964) Principal features and origin of podiform chromite deposits, and some observations on the Guelman-Soridag district, Turkey. Econ Geol 59(8):1497–1524

    Article  CAS  Google Scholar 

  • Turner S, Handler M, Bindeman I, Suzuki K (2009) New insights into the origin of O-Hf–Os isotope signatures in arc lavas from Tonga-Kermadec. Chem Geol 266(3):187–193

    Article  ADS  Google Scholar 

  • Urey HC (1947) The thermodynamic properties of isotopic substances. Journal of the Chemical Society (Resumed) pp. 562–581

  • Uysal I, Tarkian M, Sadiklar MB, Zaccarini F, Meisel T, Garuti G, Heidrich S (2009) Petrology of Al-and Cr-rich ophiolitic chromitites from the Muğla, SW Turkey: implications from composition of chromite, solid inclusions of platinum-group mineral, silicate, and base-metal mineral, and Os-isotope geochemistry. Contrib Mineral Petr 158(5):659–674

    Article  ADS  CAS  Google Scholar 

  • Uysal I, Akmaz RM, Saka S, Kapsiotis A (2016) Coexistence of compositionally heterogeneous chromitites in the Antalya-Isparta ophiolitic suite, SW Turkey: a record of sequential magmatic processes in the sub-arc lithospheric mantle. Lithos 248:160–174

    Article  ADS  Google Scholar 

  • Walker RJ, Prichard HM, Ishiwatari A, Pimentel M (2002) The osmium isotopic composition of convecting upper mantle deduced from ophiolite chromites. Geochim Cosmochim Ac 66(2):329–345

    Article  ADS  CAS  Google Scholar 

  • Wang Z, Liu S, Liu J, Huang J, Xiao Y, Chu Z, Zhao X, Tang L (2017) Zinc isotope fractionation during mantle melting and constraints on the Zn isotope composition of Earth’s upper mantle. Geochim Cosmochim Ac 198:151–167

    Article  ADS  CAS  Google Scholar 

  • Wang Z, Liu S, Chen L, Li S, Zeng G (2018) Compositional transition in natural alkaline lavas through silica-undersaturated melt–lithosphere interaction. Geology 46(9):771–774

    Article  ADS  CAS  Google Scholar 

  • Wang Z, Liu S, Rudnick RL, Teng F, Wang S, Haggerty SE (2022) Zinc isotope evidence for carbonate alteration of oceanic crustal protoliths of cratonic eclogites. Earth Planet Sc Lett 580:117394

    Article  CAS  Google Scholar 

  • Warren JM (2016) Global variations in abyssal peridotite compositions. Lithos 248–251:193–219

    Article  ADS  Google Scholar 

  • Woodhead J, Brauns M (2004) Current limitations to the understanding of Re–Os behaviour in subduction systems, with an example from New Britain. Earth Planet Sc Lett 221(1):309–323

    Article  ADS  CAS  Google Scholar 

  • Xiong FH, Yang JS, Robinson PT, Xu XZ, Liu Z, Li Y, Li JY, Chen SY (2015) Origin of podiform chromitite, a new model based on the Luobusa ophiolite. Tibet Gondwana Res 27(2):525–542

    Article  ADS  CAS  Google Scholar 

  • Xiong Q, Griffin WL, Zheng J, O’Reilly SY, Pearson NJ, Xu B, Belousova EA (2016) Southward trench migration at ∼130–120 Ma caused accretion of the Neo-Tethyan forearc lithosphere in Tibetan ophiolites. Earth Planet Sc Lett 438:57–65

    Article  ADS  CAS  Google Scholar 

  • Xiong FH, Yang JS, Robinson PT, Xu XZ, Liu Z, Zhou WD, Feng GY, Xu JF, Li JY, Niu XL (2017a) High-Al and high-Cr podiform chromitites from the western Yarlung-Zangbo suture zone, Tibet: implications from mineralogy and geochemistry of chromian spinel, and platinum-group elements. Ore Geol Rev 80:1020–1041

    Article  Google Scholar 

  • Xiong Q, Henry H, Griffin WL, Zheng J, Satsukawa T, Pearson NJ, O’Reilly SY (2017) High- and low-Cr chromitite and dunite in a Tibetan ophiolite: evolution from mature subduction system to incipient forearc in the Neo-Tethyan Ocean. Contrib Miner Petr 172(6):1–22

    Article  CAS  Google Scholar 

  • Xiong FH, Yang JS, Xu XZ, Kapsiotis A, Hao X, Liu Z (2018) Compositional and isotopic heterogeneities in the Neo-Tethyan upper mantle recorded by coexisting Al-rich and Cr-rich chromitites in the Purang peridotite massif, SW Tibet (China). J Asian Earth Sci 159:109–129

    Article  ADS  Google Scholar 

  • Xiong FH, Meng YK, Yang JS, Liu Z, Xu XZ, Eslami A, Zhang R (2020a) Geochronology and petrogenesis of the mafic dykes from the Purang ophiolite: Implications for evolution of the western Yarlung-Tsangpo suture zone, southwestern Tibet. Geosci Front 11(1):277–292

    Article  CAS  Google Scholar 

  • Xiong Q, Xu Y, González-Jiménez JM, Liu J, Alard O, Zheng J, Griffin WL, O’Reilly SY (2020b) Sulfide in dunite channels reflects long-distance reactive migration of mid-ocean-ridge melts from mantle source to crust: a Re-Os isotopic perspective. Earth Planet Sc Lett 531:115969

    Article  CAS  Google Scholar 

  • Xiong FH, Zoheir B, Wirth R, Milushi I, Qiu T, Yang JS (2021) Mineralogical and isotopic peculiarities of high-Cr chromitites: implications for a mantle convection genesis of the Bulqiza ophiolite. Lithos 398–399:106305

    Article  Google Scholar 

  • Xiong Q, Dai H, Zheng J, Griffin WL, Zheng H, Wang L, Reilly SYO (2022) Vertical depletion of ophiolitic mantle reflects melt focusing and interaction in sub-spreading-center asthenosphere. Nat Commun 13(1):6956

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu X, Yang J, Ba D, Guo G, Robinson PT, Li J (2011) Petrogenesis of the Kangjinla peridotite in the Luobusa ophiolite, Southern Tibet. J Asian Earth Sci 42(4):553–568

    Article  ADS  Google Scholar 

  • Xu Z, Dilek Y, Yang J, Liang F, Liu F, Ba D, Cai Z, Li G, Dong H, Ji S (2015) Crustal structure of the Indus-Tsangpo suture zone and its ophiolites in southern Tibet. Gondwana Res 2015(27):507–524

    Article  ADS  Google Scholar 

  • Xu Y, Liu J, Xiong Q, Su B, Scott JM, Xu B, Zhu D, Pearson DG (2020) The complex life cycle of oceanic lithosphere: a study of Yarlung-Zangbo ophiolitic peridotites, Tibet. Geochim Cosmochim Ac 277:175–191

    Article  ADS  CAS  Google Scholar 

  • Yajima K, Fujimaki H (2001) High-Ca and low-Ca boninites from Chichijima, Bonin (Ogasawara) archipelago. Jpn Mag Mineral Petrol Sci 30(5):217–236

    CAS  Google Scholar 

  • Yang J, Robinson PT, Dilek Y (2014) Diamonds in ophiolites. Elements 10(2):127–130

    Article  ADS  Google Scholar 

  • Yang J, Meng F, Xu X, Robinson PT, Dilek Y, Makeyev AB, Wirth R, Wiedenbeck M, Cliff J (2015) Diamonds, native elements and metal alloys from chromitites of the Ray-Iz ophiolite of the Polar Urals. Gondwana Res 27(2):459–485

    Article  ADS  Google Scholar 

  • Yang J, Wu W, Lian D, Rui H (2021) Peridotites, chromitites and diamonds in ophiolites. Nat Rev Earth Environ 2(3):198–212

    Article  ADS  CAS  Google Scholar 

  • Yang S, Yang J, Zhang J, Li R, Lian D, Xiong F, Cao C, Liu F, Zhao H (2022) Petrogenesis of mafic rocks from the Xigaze ophiolite, Southern Tibet: insights into forearc extension induced by Neotethyan rollback. Lithos 422–423:106723

    Article  Google Scholar 

  • Ye K, Song YR, Chen Y, Xu HJ, Liu JB, Sun M (2009) Multistage metamorphism of orogenic garnet–lherzolite from Zhimafang, Sulu UHP terrane, E. China: implications for mantle wedge convection during progressive oceanic and continental subduction. Lithos 109(3):155–175

    Article  ADS  CAS  Google Scholar 

  • Yin A, Harrison TM (2000) Geologic evolution of the Himalayan-Tibetan orogen. Annu Rev Earth Pl Sc 28(1):211–280

    Article  ADS  CAS  Google Scholar 

  • Young ED, Manning CE, Schauble EA, Shahar A, Macris CA, Lazar C, Jordan M (2015) High-temperature equilibrium isotope fractionation of non-traditional stable isotopes: experiments, theory, and applications. Chem Geol 395:176–195

    Article  ADS  CAS  Google Scholar 

  • Zhang C, Liu CZ, Wu FY, Zhang LL, Ji WQ (2016) Geochemistry and geochronology of mafic rocks from the Luobusa ophiolite, South Tibet. Lithos 245:93–108

    Article  ADS  CAS  Google Scholar 

  • Zhang P, Zhou M, Robinson PT, Pearce JA, Malpas J, Liu Q, Xia X (2019) Evolution of nascent mantle wedges during subduction initiation: Li-O isotopic evidence from the Luobusa ophiolite, Tibet. Geochim Cosmochim Ac 245:35–58

    Article  ADS  CAS  Google Scholar 

  • Zhang C, Liu C, Liu T, Wu F (2020) Evolution of mantle peridotites from the Luobusa ophiolite in the Tibetan Plateau: Sr-Nd-Hf-Os isotope constraints. Lithos 362–363:105477

    Article  Google Scholar 

  • Zhang P, Zhou M, Yumul GP, Wang CY (2021) Geodynamic setting of high-Cr chromite mineralization in nascent subduction zones: Li isotopic and REE constraints from the Zambales ophiolite, Philippines. Lithos 384–385:105975

    Article  Google Scholar 

  • Zhang X, Chen L, Wang X, Hanyu T, Hofmann AW, Komiya T, Nakamura K, Kato Y, Zeng G, Gou W, Li W (2022) Zinc isotopic evidence for recycled carbonate in the deep mantle. Nat Commun 13(1):1–7

    Google Scholar 

  • Zhao H, Yang J, Liu F, Xiong F, Lian D, Yao H (2019) Mineralogy and geochemistry of the high-Cr podiform chromitite from the Cuobuzha Ophiolite, Yarlung Zangbo Suture Zone, Western Tibet, China: implication for its origin. Acta Geol Sin-English Edition 94(1):75–89

    Article  Google Scholar 

  • Zheng H, Huang Q, Kapsiotis A, Xia B, Yin Z, Zhong Y, Lu Y, Shi X (2017) Early cretaceous ophiolites of the Yarlung Zangbo Suture Zone: insights from dolerites and peridotites from the Baer upper mantle suite, SW Tibet (China). Int Geol Rev 59(11):1–19

    Article  CAS  Google Scholar 

  • Zhou MF, Robinson PT (1997) Origin and tectonic environment of podiform chromite deposits. Econ Geol 92(2):259–262

    Article  CAS  Google Scholar 

  • Zhou MF, Robinson PT, Bai WJ (1994) Formation of podiform chromitites by melt/rock interaction in the upper mantle. Miner Deposita 29(1):98–101

    Article  ADS  CAS  Google Scholar 

  • Zhou MF, Robinson PT, Malpas J, Li Z (1996) Podiform chromitites in the Luobusa ophiolite (southern Tibet): implications for melt-rock interaction and chromite segregation in the upper mantle. J Petrol 37(1):3–21

    Article  ADS  CAS  Google Scholar 

  • Zhou MF, Robinson PT, Malpas J, Edwards SJ, Qi L (2005) REE and PGE geochemical constraints on the formation of dunites in the Luobusa Ophiolite, Southern Tibet. J Petrol 46(3):615–639

    Article  CAS  Google Scholar 

  • Zhou MF, Robinson PT, Su BX, Gao JF, Li JW, Yang JS, Malpas J (2014) Compositions of chromite, associated minerals, and parental magmas of podiform chromite deposits: the role of slab contamination of asthenospheric melts in suprasubduction zone environments. Gondwana Res 26(1):262–283

    Article  ADS  CAS  Google Scholar 

  • Zhu D, Zhao Z, Niu Y, Mo X, Chung S, Hou Z, Wang L, Wu F (2011) The Lhasa terrane: record of a microcontinent and its histories of drift and growth. Earth Planet Sc Lett 301(1):241–255

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for Dr. Huichao Rui and Dr. Rongzhong Bo’s assistance in the field excursion and sample analyses. We thank Prof. Paul Tapponnier, Prof. Xisheng Xu, Dr. Huichao Rui, and Dr. Rongzhong Bo for the beneficial discussions which have greatly improved the manuscript. Yi Ding and Jintong Lian have helped with figure and table preparations. Careful journal reviews by Karen Kelley and two anonymous reviewers led to considerable improvements in the presentation and discussion.

Funding

This research was supported by the National Science Foundation of China (grant no. 42272068, 92062215, 42330306, 42302080), Open Fund from SinoProbe Laboratory (grant no. Sinoprobe Lab 202221), the Fundamental Research Funds for the Central Universities (grant no. 14380186), and the “GeoX” Interdisciplinary Research Funds for the Frontiers Science Center for Critical Earth Material Cycling, Nanjing University (grant no. 14380193).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongyang Lian or Jingsui Yang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Editorial handling: E. Mansur

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 21 KB)

Supplementary file2 (XLSX 470 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lian, D., Liu, F., Cai, P. et al. Osmium and zinc isotope constraints on the origin of chromitites from the Yarlung-Zangbo ophiolites, Tibet, China. Miner Deposita (2024). https://doi.org/10.1007/s00126-024-01252-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00126-024-01252-9

Keywords

Navigation