Skip to main content
Log in

An autonomous navigation method for orchard rows based on a combination of an improved a-star algorithm and SVR

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Autonomous robot-based orchard operations will become an alternative solution in the field of precision agriculture. One of the keys to robotic work is to achieve autonomous navigation that is as accurate as possible to ensure the most accurate working effect. In this work, we propose an orchard path fitting and navigation method based on the fusion of improved A-Star algorithm and Support Vector Machine Regression (SVR) to meet the requirements of autonomous navigation crawler platform for autonomous navigation in orchard environment and ensure accuracy. In this study, the actual speed and turning radius of the left and right tracks of the crawler platform were collected under 5 different slopes and 400 sets of different theoretical speed combinations of left and right tracks through the design nesting test, and the motion model of the crawler platform was constructed based on SVR. Orchard point cloud data were obtained by 3D solid-state LiDAR, and the improved A-star algorithm was used to fit the navigation path and calculate the turning curvature radius. Taking this curvature radius as the optimal navigation target value, the motion model predicts the optimal theoretical speed of left and right tracks, which is used as a reference for autonomous navigation. The comparison experiment of autonomous navigation was carried out in two modes: traditional and improved A-Star algorithm. The results show that the average values of the maximum lateral and longitudinal deviation of the improved automatic navigation method between orchards row are 6.90 cm and 9.88 cm, respectively. Compared with the method combined with the traditional A-Star algorithm and SVR, the values were 8.94 cm and 10.88 cm and were optimized by 29.57% and 10.12%, respectively. The autonomous navigation method proposed in this paper can meet the needs of orchards rows autonomous navigation, and can be widely applied to different orchard site environments (slope, ground obstacles, bad surface conditions), which can provide reference for the production practices of unmanned orchards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The data are available from the corresponding author on reasonable request.

References

Download references

Acknowledgements

This research was financially supported by the National Key research and development Plan of China (Grant numbers 2019YFD1002401). We also thank our colleagues at the Northwest A&F University for the technical expertise and support that greatly aided this research.

Funding

The National Key research and development Plan of China, 2019YFD1002401, Yongjie Cui.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongjie Cui.

Ethics declarations

Conflict of interest

All authors disclosed no relevant relationships.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Xu, J., Zhang, J. et al. An autonomous navigation method for orchard rows based on a combination of an improved a-star algorithm and SVR. Precision Agric 25, 1429–1453 (2024). https://doi.org/10.1007/s11119-024-10118-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-024-10118-z

Keywords

Navigation