Skip to main content

Advertisement

Log in

Bridging the Temporal Gaps in GRACE/GRACE–FO Terrestrial Water Storage Anomalies over the Major Indian River Basins Using Deep Learning

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

Temporal gaps in the Gravity Recovery and Climate Experiment (GRACE) and GRACE–FO missions pose difficulties in analyzing spatiotemporal variations of terrestrial water storage (TWS) anomalies over Indian river basins. In this study, we developed a deep learning-based CNN–LSTM model to address these temporal gaps by integrating GRACE–TWS with other meteorological variables. The model achieved a strong Pearson’s correlation coefficient (median of 0.96 in training, 0.92 in testing), high Nash–Sutcliffe efficiency (0.91 in training, 0.85 in testing) and low normalized root-mean-squared error (0.064 in training, 0.098 in testing) when compared to the original GRACE–TWS. Moreover, a comparison with two publicly available global datasets suggests the superior performance of CNN–LSTM in predicting TWSA (terrestrial water storage anomalies). The study also highlighted potential biases up to 2 cm/yr in long-term TWSA trends due to temporal gaps in GRACE/GRACE–FO. Additionally, the estimated TWSA matched well with in situ wells across majority of the Indian river basins. The findings revealed significant groundwater depletion in the northern and northwestern river basins but positive trends in the central and southern basins in India. Overall, the estimated TWSA product developed in this study provides continuous data records and valuable insights into long-term trends in groundwater storage, making it useful for groundwater monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  • Ahmed, M., & Abdelmohsen, K. (2018). Quantifying modern recharge and depletion rates of the Nubian Aquifer in Egypt. Surveys in Geophysics, 39(4), 729–751.

    Article  ADS  Google Scholar 

  • Asoka, A., Gleeson, T., Wada, Y., & Mishra, V. (2017). Relative contribution of monsoon precipitation and pumping to changes in groundwater storage in India. Nature Geoscience, 10(2), 109–117.

    Article  CAS  ADS  Google Scholar 

  • Becker, M., Meyssignac, B., Xavier, L., Cazenave, A., Alkama, R., & Decharme, B. (2011). Past terrestrial water storage (1980–2008) in the Amazon Basin reconstructed from GRACE and in situ river gauging data. Hydrology and Earth System Sciences, 15(2), 533–546.

    Article  ADS  Google Scholar 

  • Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal of machine learning research, 13(2), 281–305.

    MathSciNet  Google Scholar 

  • Bhanja, S. N., Mukherjee, A., Rodell, M., Wada, Y., Chattopadhyay, S., Velicogna, I., Pangaluru, K., & Famiglietti, J. S. (2017). Groundwater rejuvenation in parts of India influenced by water-policy change implementation. Scientific reports, 7(1), 7453.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  • Bhanja, S. N., Mukherjee, A., Saha, D., Velicogna, I., & Famiglietti, J. S. (2016). Validation of GRACE based groundwater storage anomaly using in-situ groundwater level measurements in India. Journal of Hydrology, 543, 729–738.

    Article  ADS  Google Scholar 

  • CGWB, (2014). Dynamic ground water resources of India (As on 31st March 2011) Faridabad July 2014. http://www.cgwb.gov.in/Documents/Dynamic-GW-Resources-2011.pdf

  • Chen, J., Li, J., Zhang, Z., & Ni, S. (2014). Long-term groundwater variations in Northwest India from satellite gravity measurements. Global and Planetary Change, 116, 130–138.

    Article  ADS  Google Scholar 

  • Cheng, M., Ries, J. C., & Tapley, B. D. (2011). Variations of the Earth’s figure axis from satellite laser ranging and GRACE. Journal of Geophysical Research (Solid Earth), 116(B1), B01409. https://doi.org/10.1029/2010JB000850

    Article  ADS  Google Scholar 

  • Dangar, S., & Mishra, V. (2021). Natural and anthropogenic drivers of the lost groundwater from the Ganga River basin. Environmental Research Letters, 16(11), 114009.

    Article  ADS  Google Scholar 

  • de Linage, C., Famiglietti, J. S., & Randerson, J. T. (2014). Statistical prediction of terrestrial water storage changes in the Amazon Basin using tropical Pacific and North Atlantic sea surface temperature anomalies. Hydrology and Earth System Sciences, 18(6), 2089–2102.

    Article  ADS  Google Scholar 

  • Didan, K. (2015). MOD13C2 MODIS/Terra vegetation indices monthly L3 global 0.05 deg CMG V006. NASA EOSDIS Land Processes DAAC, 10, 2015.

    Google Scholar 

  • Feng, W., Zhong, M., Lemoine, J. M., Biancale, R., Hsu, H. T., & Xia, J. (2013). Evaluation of groundwater depletion in North China using the Gravity Recovery and Climate Experiment (GRACE) data and ground-based measurements. Water Resources Research, 49(4), 2110–2118.

    Article  ADS  Google Scholar 

  • Forootan, E., Kusche, J., Loth, I., Schuh, W. D., Eicker, A., Awange, J., Longuevergne, L., Diekkrüger, B., Schmidt, M., & Shum, C. K. (2014). Multivariate prediction of total water storage changes over West Africa from multi-satellite data. Surveys in Geophysics, 35, 913–940.

    Article  ADS  Google Scholar 

  • Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell, A., & Michaelsen, J. (2015). The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Scientific data, 2(1), 150066.

    Article  PubMed  PubMed Central  Google Scholar 

  • Girotto, M., De Lannoy, G. J., Reichle, R. H., & Rodell, M. (2016). Assimilation of gridded terrestrial water storage observations from GRACE into a land surface model. Water Resources Research, 52(5), 4164–4183.

    Article  ADS  Google Scholar 

  • Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.

  • Gyawali, B., Ahmed, M., Murgulet, D., & Wiese, D. N. (2022). Filling temporal gaps within and between GRACE and GRACE-FO terrestrial water storage records: An innovative approach. Remote Sensing, 14(7), 1565.

    Article  ADS  Google Scholar 

  • Hernández-Sánchez, R. I., Castellanos, F., Herrera-Barrientos, J., & Belmonte-Jiménez, S. I. (2021). Gravimetric determination of storage coefficient and storage change of groundwater in an uncontrolled and unconfined aquifer. Natural Resources Research, 30, 4207–4218.

    Article  Google Scholar 

  • Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., … Thépaut, J. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999–2049.

    Article  ADS  Google Scholar 

  • Humphrey, V., & Gudmundsson, L. (2019). GRACE-REC: a reconstruction of climate-driven water storage changes over the last century. Earth System Science Data, 11(3), 1153–1170.

    Article  ADS  Google Scholar 

  • Humphrey, V., Gudmundsson, L., & Seneviratne, S. I. (2016). Assessing global water storage variability from GRACE: Trends, seasonal cycle, subseasonal anomalies and extremes. Surveys in Geophysics, 37(2), 357–395.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  • Humphrey, V., Gudmundsson, L., & Seneviratne, S. I. (2017). A global reconstruction of climate-driven subdecadal water storage variability. Geophysical Research Letters, 44(5), 2300–2309.

    Article  ADS  Google Scholar 

  • Jing, W., Zhao, X., Yao, L., Jiang, H., Xu, J., Yang, J., & Li, Y. (2020). Variations in terrestrial water storage in the Lancang-Mekong river basin from GRACE solutions and land surface model. Journal of Hydrology, 580, 124258. https://doi.org/10.1016/j.jhydrol.2019.124258

    Article  Google Scholar 

  • Jones, P. W. (1999). First-and second-order conservative remapping schemes for grids in spherical coordinates. Monthly Weather Review, 127(9), 2204–2210.

    Article  ADS  Google Scholar 

  • Khaki, M., Hoteit, I., Kuhn, M., Awange, J., Forootan, E., Van Dijk, A. I., Schumacher, M., & Pattiaratchi, C. (2017). Assessing sequential data assimilation techniques for integrating GRACE data into a hydrological model. Advances in Water Resources, 107, 301–316.

    Article  ADS  Google Scholar 

  • Kumar, K. S., AnandRaj, P., Sreelatha, K., & Sridhar, V. (2023). Reconstruction of GRACE terrestrial water storage anomalies using multi-layer perceptrons for South Indian River basins. Science of The Total Environment, 857, 159289.

    Article  ADS  Google Scholar 

  • Kumar, K. S., Sridhar, V., Varaprasad, B. J. S., & Chinnapa Reddy, K. (2022). Bridging the data gap between the GRACE missions and assessment of groundwater storage variations for Telangana State. India. Water, 14(23), 3852.

    Article  Google Scholar 

  • Landerer, F. W., & Cooley, S. S. (2021). Gravity Recovery and Climate Experiment Follow-on (GRACE-FO): Level-3 Data Product User Handbook. NASA Jet Propulsion Laboratory: Pasadena, CA, USA.

    Google Scholar 

  • Landerer, F. W., Flechtner, F. M., Save, H., Webb, F. H., Bandikova, T., Bertiger, W. I., Bettadpur, S. V., Byun, S. H., Dahle, C., Dobslaw, H., Fahnestock, E., Harvey, N., Kang, Z., Kruizinga, G. L. H., Loomis, B. D., McCullough, C., Murböck, M., Nagel, P., Paik, M., … Yuan, D. N. (2020). Extending the global mass change data record: GRACE Follow-On instrument and science data performance. Geophysical Research Letters, 47(12), e2020GL088306.

    Article  ADS  Google Scholar 

  • LeCun, Y., Boser, B., Denker, J., Henderson, D., Howard, R., Hubbard, W., & Jackel, L. (1989). Handwritten digit recognition with a back-propagation network. Advances in neural information processing systems2.

  • Li, B., Rodell, M., Zaitchik, B. F., Reichle, R. H., Koster, R. D., & van Dam, T. M. (2012). Assimilation of GRACE terrestrial water storage into a land surface model: Evaluation and potential value for drought monitoring in western and central Europe. Journal of Hydrology, 446, 103–115.

    Article  ADS  Google Scholar 

  • Li, F., Kusche, J., Chao, N., Wang, Z., & Löcher, A. (2021). Long-term (1979-present) total water storage anomalies over the global land derived by reconstructing GRACE data. Geophysical Research Letters, 48(8), e2021GL093492.

    Article  ADS  Google Scholar 

  • Li, F., Kusche, J., Rietbroek, R., Wang, Z., Forootan, E., Schulze, K., & Lück, C. (2020). Comparison of data-driven techniques to reconstruct (1992–2002) and predict (2017–2018) GRACE-like gridded total water storage changes using climate inputs. Water Resources Research, 56(5), e2019WR026551.

    Article  ADS  Google Scholar 

  • Liu, P.-W., Famiglietti, J. S., Purdy, A. J., Adams, K. H., McEvoy, A. L., Reager, J. T., Bindlish, R., Wiese, D. N., David, C. H., & Rodell, M. (2022). Groundwater depletion in California’s Central Valley accelerates during megadrought. Nature Communications, 13(1), 7825.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Long, D., Pan, Y., Zhou, J., Chen, Y., Hou, X., Hong, Y., Scanlon, B. R., & Longuevergne, L. (2017). Global analysis of spatiotemporal variability in merged total water storage changes using multiple GRACE products and global hydrological models. Remote Sensing of Environment, 192, 198–216.

    Article  ADS  Google Scholar 

  • Loomis, B. D., Luthcke, S. B., & Sabaka, T. J. (2019). Regularization and error characterization of GRACE mascons. Journal of Geodesy, 93(9), 1381–1398.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Lopez, T., Al Bitar, A., Biancamaria, S., Güntner, A., & Jäggi, A. (2020). On the use of satellite remote sensing to detect floods and droughts at large scales. Surveys in Geophysics, 41, 1461–1487.

    Article  ADS  Google Scholar 

  • Luthcke, S. B., Sabaka, T. J., Loomis, B. D., Arendt, A. A., McCarthy, J. J., & Camp, J. (2013). Antarctica, Greenland and Gulf of Alaska land-ice evolution from an iterated GRACE global mascon solution. Journal of Glaciology, 59(216), 613–631.

    Article  ADS  Google Scholar 

  • MacDonald, A. M., Bonsor, H. C., Ahmed, K. M., Burgess, W. G., Basharat, M., Calow, R. C., Dixit, A., Foster, S. S. D., Gopal, K., Lapworth, D. J., Lark, R. M., Moench, M., Mukherjee, A., Rao, M. S., Shamsudduha, M., Smith, L., Taylor, R. G., Tucker, J., van Steenbergen, F., & Yadav, S. K. (2016). Groundwater quality and depletion in the Indo-Gangetic Basin mapped from in situ observations. Nature Geoscience, 9(10), 762–766.

    Article  CAS  ADS  Google Scholar 

  • Meghwal, R., Shah, D., & Mishra, V. (2019). On the changes in groundwater storage variability in western India using GRACE and well observations. Remote Sensing in Earth Systems Sciences, 2, 260–272.

    Article  ADS  Google Scholar 

  • Memarian Sorkhabi, O., Asgari, J., & Randhir, T. O. (2023). Monitoring groundwater storage based on satellite gravimetry and deep learning. Natural Resources Research, 32(3), 1007–1020.

    Article  Google Scholar 

  • Mishra, V., Thirumalai, K., Jain, S., & Aadhar, S. (2021). Unprecedented drought in South India and recent water scarcity. Environmental Research Letters, 16(5), 054007.

    Article  ADS  Google Scholar 

  • Mo, S., Zhong, Y., Forootan, E., Mehrnegar, N., Yin, X., Wu, J., Feng, W., & Shi, X. (2022). Bayesian convolutional neural networks for predicting the terrestrial water storage anomalies during GRACE and GRACE-FO gap. Journal of Hydrology, 604, 127244.

    Article  Google Scholar 

  • Moudgil, P. S., & Rao, G. S. (2023). Groundwater levels estimation from GRACE/GRACE–FO and hydro-meteorological data using deep learning in Ganga River basin. India. Environmental Earth Sciences, 82(19), 441.

    Article  ADS  Google Scholar 

  • Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I—A discussion of principles. Journal of hydrology, 10(3), 282–290.

    Article  ADS  Google Scholar 

  • Ng, W., Rasmussen, P. F., & Panu, U. S. (2009). Infilling Missing Daily Precipitation Data at Multiple Sites Using a Multivariate Truncated Normal Distribution Model. AGU Fall Meeting Abstracts (Vol. 2009, pp. H31D-0813).

  • O’Malley, T., Bursztein, E., Long, J., Chollet, F., Jin, H., & Invernizzi, L. (2019). Keras tuner. Retrieved, 21, 2020.

    Google Scholar 

  • Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, É. (2011). Scikit-learn: Machine learning in Python. Journal of machine Learning research, 12, 2825–2830.

    MathSciNet  Google Scholar 

  • Peltier, R. W., Argus, D. F., & Drummond, R. (2018). Comment on An assessment of the ICE-6G_C (VM5a) glacial isostatic adjustment model by Purcell et al. Journal of Geophysical Research: Solid Earth, 123(2), 2019–2028.

    Article  ADS  Google Scholar 

  • Rodell, M., Houser, P., Peters-Lidard, C., Kato, H., Kumar, S., Gottschalck, J., Mitchell, K., & Meng, J. (2004). Nasa/Noaa’s global land data assimilation system (GLDAS): Recent results and future plans. In Proceedings of the ECMWF/ELDAS Workshop on Land Surface Assimilation, Shinfield, UK (pp. 8-11).

  • Rodell, M., & Famiglietti, J. S. (2001). An analysis of terrestrial water storage variations in Illinois with implications for the Gravity Recovery and Climate Experiment (GRACE). Water Resources Research, 37(5), 1327–1339.

    Article  ADS  Google Scholar 

  • Rodell, M., Famiglietti, J. S., Wiese, D. N., Reager, J. T., Beaudoing, H. K., Landerer, F. W., & Lo, M.-H. (2018). Emerging trends in global freshwater availability. Nature, 557(7707), 651–659.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Rodell, M., Velicogna, I., & Famiglietti, J. S. (2009). Satellite-based estimates of groundwater depletion in India. Nature, 460(7258), 999–1002. https://doi.org/10.1038/nature08238

    Article  CAS  PubMed  ADS  Google Scholar 

  • Satizábal-Alarcón, D. A., Suhogusoff, A., & Ferrari, L. C. (2024). Characterization of groundwater storage changes in the Amazon River Basin based on downscaling of GRACE/GRACE–FO data with machine learning models. Science of The Total Environment, 912, 168958.

    Article  PubMed  ADS  Google Scholar 

  • Save, H. (2020). CSR GRACE/GRACE–FO RL06 mascon solutions v02. Mascon Solut, 12, 24.

    Google Scholar 

  • Save, H., Bettadpur, S., & Tapley, B. D. (2016). High-resolution CSR GRACE RL05 mascons. Journal of Geophysical Research: Solid Earth, 121(10), 7547–7569.

    Article  ADS  Google Scholar 

  • Scanlon, B. R., Longuevergne, L., & Long, D. (2012). Ground referencing GRACE satellite estimates of groundwater storage changes in the California Central Valley, USA. Water Resources Research, 48(4), W04520.

    Article  ADS  Google Scholar 

  • Scanlon, B. R., Zhang, Z., Rateb, A., Sun, A., Wiese, D., Save, H., Beaudoing, H., Lo, M. H., Müller-Schmied, H., Döll, P., van Beek, R., Swenson, S., Lawrence, D., Croteau, M., & Reedy, R. C. (2019). Tracking seasonal fluctuations in land water storage using global models and GRACE satellites. Geophysical Research Letters, 46(10), 5254–5264.

    Article  ADS  Google Scholar 

  • Scanlon, B. R., Zhang, Z., Save, H., Sun, A. Y., Müller Schmied, H., Van Beek, L. P., Wiese, D. N., Wada, Y., Long, D., Reedy, R. C., Longuevergne, L., Döll, P., & Bierkens, M. F. (2018). Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data. Proceedings of the National Academy of Sciences, 115(6), E1080–E1089. https://doi.org/10.1073/pnas.1704665115

    Article  CAS  ADS  Google Scholar 

  • Seneviratne, S. I., Viterbo, P., Lüthi, D., & Schär, C. (2004). Inferring changes in terrestrial water storage using ERA-40 reanalysis data: The Mississippi River basin. Journal of climate, 17(11), 2039–2057.

    Article  ADS  Google Scholar 

  • Seo, J. Y., & Lee, S. I. (2021). Predicting changes in spatiotemporal groundwater storage through the integration of multi-satellite data and deep learning models. IEEE Access, 9, 157571–157583.

    Article  Google Scholar 

  • Shah, T., Giordano, M., & Mukherji, A. (2012). Political economy of the energy-groundwater nexus in India: exploring issues and assessing policy options. Hydrogeology Journal, 20(5), 995.

    Article  ADS  Google Scholar 

  • Sun, A. Y., Green, R., Swenson, S., & Rodell, M. (2012). Toward calibration of regional groundwater models using GRACE data. Journal of Hydrology, 422–423, 1–9.

    Article  ADS  Google Scholar 

  • Sun, A. Y., Scanlon, B. R., Zhang, Z., Walling, D., Bhanja, S. N., Mukherjee, A., & Zhong, Z. (2019). Combining physically based modeling and deep learning for fusing GRACE satellite data: Can we learn from mismatch? Water Resources Research, 55(2), 1179–1195.

    Article  ADS  Google Scholar 

  • Sun, Y., Riva, R., & Ditmar, P. (2016). Optimizing estimates of annual variations and trends in geocenter motion and J2 from a combination of GRACE data and geophysical models. Journal of Geophysical Research: Solid Earth, 121(11), 8352–8370.

    Article  ADS  Google Scholar 

  • Sun, Z., Long, D., Yang, W., Li, X., & Pan, Y. (2020). Reconstruction of GRACE data on changes in total water storage over the global land surface and 60 basins. Water Resources Research, 56(4), e2019WR026250.

    Article  ADS  Google Scholar 

  • Swenson, S., Chambers, D., & Wahr, J. (2008). Estimating geocenter variations from a combination of GRACE and ocean model output. Journal of Geophysical Research: Solid Earth, 113(B8), B08410.

    Article  ADS  Google Scholar 

  • Syed, T. H., Famiglietti, J. S., Rodell, M., Chen, J., & Wilson, C. R. (2008). Analysis of terrestrial water storage changes from GRACE and GLDAS. Water Resources Research, 44(2), WR005779.

    Article  Google Scholar 

  • Tapley, B. D., Bettadpur, S., Watkins, M., & Reigber, C. (2004). The gravity recovery and climate experiment: Mission overview and early results. Geophysical research letters, 31(9), GL019920.

    Article  Google Scholar 

  • Tapley, B. D., Watkins, M. M., Flechtner, F., Reigber, C., Bettadpur, S., Rodell, M., & Velicogna, I. (2019). Contributions of GRACE to understanding climate change. Nature Climate Change, 9, 358–369.

    Article  ADS  Google Scholar 

  • Tariq, A., Ali, S., Basit, I., Jamil, A., Farmonov, N., Khorrami, B., & Hatamleh, W. A. (2023a). Terrestrial and groundwater storage characteristics and their quantification in the Chitral (Pakistan) and Kabul (Afghanistan) river basins using GRACE/GRACE–FO satellite data. Groundwater for Sustainable Development, 23, 100990.

    Article  Google Scholar 

  • Tariq, A., Jiango, Y., Lu, L., Jamil, A., Al-ashkar, I., Kamran, M., & Sabagh, A. E. (2023b). Integrated use of Sentinel-1 and Sentinel-2 data and open-source machine learning algorithms for burnt and unburnt scars. Geomatics, Natural Hazards and Risk, 14(1), 2190856.

    Article  Google Scholar 

  • Tariq, A., & Qin, S. (2023). Spatio-temporal variation in surface water in Punjab, Pakistan from 1985 to 2020 using machine-learning methods with time-series remote sensing data and driving factors. Agricultural Water Management, 280, 108228.

    Article  Google Scholar 

  • Tiwari, V. M., Wahr, J., & Swenson, S. (2009). Dwindling groundwater resources in northern India, from satellite gravity observations. Geophysical Research Letters, 36(18), GL039401.

    Article  Google Scholar 

  • Tiwari, V., Wahr, J. M., Swenson, S., & Singh, B. (2011). Land water storage variation over Southern India from space gravimetry. Current Science, 101, 536–540.

    Google Scholar 

  • Voss, K. A., Famiglietti, J. S., Lo, M., de Linage, C., Rodell, M., & Swenson, S. C. (2013). Groundwater depletion in the Middle East from GRACE with implications for transboundary water management in the Tigris-Euphrates-Western Iran region: GROUNDWATER DEPLETION IN THE MIDDLE EAST FROM GRACE. Water Resources Research, 49(2), 904–914.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  • Wahr, J., Molenaar, M., & Bryan, F. (1998). Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE. Journal of Geophysical Research: Solid Earth, 103(B12), 30205–30229.

    Article  Google Scholar 

  • Watkins, M. M., Wiese, D. N., Yuan, D.-N., Boening, C., & Landerer, F. W. (2015). Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons: Improved Gravity Observations from GRACE. Journal of Geophysical Research: Solid Earth, 120(4), 2648–2671.

    Article  ADS  Google Scholar 

  • Yang, P., Xia, J., Zhan, C., & Wang, T. (2018). Reconstruction of terrestrial water storage anomalies in Northwest China during 1948–2002 using GRACE and GLDAS products. Hydrology Research, 49(5), 1594–1607.

    Article  Google Scholar 

  • Yang, X., & Zhang, Z. (2022). A CNN-LSTM model based on a meta-learning algorithm to predict groundwater level in the middle and lower reaches of the Heihe River. China., 14(15), 2377.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Department of Science & Technology (DST-FIST/197/2018-19/580) Government of India.

Funding

This work was supported by the Department of Science & Technology (DST-FIST/197/2018-19/580) Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Srinivasa Rao.

Ethics declarations

Conflict of Interest

Authors declare they have no financial interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 3370 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moudgil, P.S., Rao, G.S. & Heki, K. Bridging the Temporal Gaps in GRACE/GRACE–FO Terrestrial Water Storage Anomalies over the Major Indian River Basins Using Deep Learning. Nat Resour Res 33, 571–590 (2024). https://doi.org/10.1007/s11053-024-10312-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-024-10312-w

Keywords

Navigation