Skip to main content
Log in

Time-dependent identification problem for a fractional Telegraph equation with the Caputo derivative

  • Original Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

This study investigates the inverse problem of determining the right-hand side of a telegraph equation given in a Hilbert space. The main equation under consideration has the form \((D_{t}^{\rho })^{2}u(t)+2\alpha D_{t}^{\rho }u(t)+Au(t)=p( t)q+f(t)\), where \(0<t\le T\), \(0<\rho <1\) and \(D_{t}^{\rho }\) is the Caputo derivative. The equation contains a self-adjoint positive operator A and a time-varying multiplier p(t) in the source function, which, like the solution of the equation, is unknown. To solve the inverse problem, an additional condition \(B[u(t)] = \psi (t)\) is imposed, where B is an arbitrary bounded linear functional. The existence and uniqueness of a solution to the problem are established and stability inequalities are derived. It should be noted that, as far as we know, such an inverse problem for the telegraph equation is considered for the first time. Examples of the operator A and the functional B are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  1. Lizama, C.: Abstract linear fractional evolution equations. In Handbook Fractional Calculus and Applications, Vol. 2, De Gryuter, 465–497 (2019)

  2. Pskhu, A.V.: Fractional Partial Differential Equations. Nauka, Moscow (2005) (in Russian)

  3. Kleiner, T., Hilfer, R.: Sequential generalized Riemann-Liouville derivatives based on distributional convolution. Fract. Calc. Appl. Anal. 25, 267–298 (2022). https://doi.org/10.1007/s13540-021-00012-0

    Article  MathSciNet  Google Scholar 

  4. Cascaval, R., Eckstein, E., Frota, C., Goldstein, A.: Fractional telegraph equations. J. Math. Anal. Appl. 276(1), 145–159 (2002). https://doi.org/10.1016/S0022-247X(02)00394-3

    Article  MathSciNet  Google Scholar 

  5. Ashurov, R., Saparbayev, R.: Fractional telegraph equation with the Caputo derivative. Fractal Fract. 7(6), 483 (2023). https://doi.org/10.3390/fractalfract7060483

    Article  Google Scholar 

  6. Ashyralyev, A., Al-Hazaimeh, H.: Stability of the time-dependent identication problem for the telegraph equation with involution. International Journal of Applied Mathematics 35(3), 447–459 (2022). https://doi.org/10.12732/ijam.v35i3.7

    Article  Google Scholar 

  7. Thomson, W.: On the theory of the electric telegraph. Proceedings of the Royal Society of London 7 (1854), 382-399. https://www.jstor.org/stable/111814

  8. Lieberstein, H.M.: Theory of Partial Differential Equations. Academic Press, New York (1972)

    Google Scholar 

  9. Arendt, W., Batty, C., Hieber, M., Neubrander, F.: Vector-Valued Laplace Transforms and Cauchy Problems. Monographs in Mathematics. 96 Birkhäuser, Basel (2001). https://doi.org/10.1007/978-3-0348-5075-9

  10. Cattaneo, C.: Sur une forme de i’equation de la chaleur eliminant le paradoxe d’une propagation instantanee. Comptes Rendus de l’Acaémie des Sciences 246, 431–433 (1958)

    Google Scholar 

  11. D’Ovidio, M., Toaldo, B., Orsingher, E.: Time changed processes governed by space-time fractional telegraph equations. Stochastic Analysis and Applications 32(6), 1009–1045 (2014). https://doi.org/10.1080/07362994.2014.962046

    Article  MathSciNet  Google Scholar 

  12. D’Ovidio, M., Polito, F.: Fractional diffusion-telegraph equations and their associated stochastic solutions.Theory of Probability and its Applications 62, 692-718 (2017)

  13. Hayt, W.: Engineering Electromagnetics, 5th edn. McGraw-Hill, New York (1989)

    Google Scholar 

  14. Banasiak, J., Mika, R.: Singular perturbed telegraph equations with applications in random walk theory. J. Appl. Stoch. Anal. 11, 9–28 (1998). https://doi.org/10.1155/S1048953398000021

    Article  Google Scholar 

  15. Effenberger, F., Litvinenko, Y.: The diffusion approximation versus the telegraph equation for modeling solar energetic particle transport with adiabatic focusing. The Astrophysical Journal 783, 15 (2014). https://doi.org/10.1088/0004-637X/783/1/15

    Article  ADS  CAS  Google Scholar 

  16. Okuko, A.: Application of the telegraph equation to oceanic diffusion: another mathematical model, Technical Report No.69, Chesapeake Bay Institute, Johns Hopkins University, Baltimore (1971)

  17. Weston, V.H., He, S.: Wave splitting of telegraph equation in \(R^{3}\) and its application to inverse scattering. Inverse Probl. 9, 789–812 (1993). https://doi.org/10.1088/0266-5611/9/6/013

    Article  ADS  Google Scholar 

  18. Boyadjiev, L., Luchko, Y.: The neutral-fractional telegraph equation. Math. Model. Nat. Phenom. 12, 51–67 (2017). https://doi.org/10.1051/mmnp/2017064

    Article  MathSciNet  Google Scholar 

  19. Masoliver, J.: Telegraphic transport processes and their fractional generalization: A review and some extensions. Entropy. 23, 364 (2021). https://doi.org/10.3390/e23030364

    Article  ADS  MathSciNet  PubMed  PubMed Central  Google Scholar 

  20. Orsingher, E., Beghin, L.: Time-fractional telegraph equation and telegraph processes with Brownian time. Probab. Theory Relat. Fields 128, 141–160 (2004). https://doi.org/10.1007/s00440-003-0309-8

    Article  MathSciNet  Google Scholar 

  21. Orsingher, E., Toaldo, B.: Space-time fractional equations and the related stable processes at random time. J. Theor. Probab. 30, 1–26 (2017). https://doi.org/10.1007/s10959-015-0641-9

    Article  MathSciNet  Google Scholar 

  22. Lorenzo, C.F., Hartley, T. T.: Initialized Fractional Calculus. Report No. NASA/TP-2000-209943

  23. Hashmi, M.S., Aslam, U., Singh, J., Nisar, K.S.: An efficient numerical scheme for fractional model of telegraph equation. Alexandria Engineering Journal 61, 6383–9393 (2022)

    Article  Google Scholar 

  24. Doetsch, G.: Introduction to the Theory and Application of the Laplace Transformation. Springer, Berlin/Heidelberg (1974)

    Book  Google Scholar 

  25. Hosseini, V.R., Avazzadeh, W.Z.: Numerical solution of fractional telegraph equation by using radial basis function. Eng. Anal. Bound. Elem. 38, 31–39 (2013)

    Article  MathSciNet  Google Scholar 

  26. Beghin, L., Orsingher, E.: The telegraph process stopped at stable-distributed times connection with the fractional telegraph equation. Fract. Calc. Appl. Anal. 2, 187–204 (2003)

    MathSciNet  Google Scholar 

  27. Orsingher, E., Xuelei, Z.: The space-fractional telegraph equation and the related fractional telegraph process. Chin. Ann. Math. 1, 45–56 (2003)

    Article  MathSciNet  Google Scholar 

  28. Huang, F.: Analytical solution for the time-fractional telegraph equation. J. Appl. Math. 2009, 1–9 (2009). https://doi.org/10.1155/2009/890158

    Article  MathSciNet  Google Scholar 

  29. Povstenko, Y., Ostoja Starzewski, M.: Fractional telegraph equation under moving time-harmonic impact. International Journal Heat and Mass Transfer. 182 (2022). https://doi.org/10.1016/j.ijheatmasstransfer.2021.121958

  30. Fino, A.Z., Ibrahim, H.: Analytical solution for a generalized space-time fractional telegraph equation. Math. Meth. Appl. Sci. 36, 1813–1824 (2013)

    Article  MathSciNet  Google Scholar 

  31. Saxena, R.K., Garra, R., Orsingher, E.: Analytical solution of space-time fractional telegraph-type equations involving Hilfer and Hadamard derivatives. arXiv:1506.06645v1 [math.PR] 19 Jun (2015)

  32. Garg, M., Sharma, A., Manohar, P.: Solution of generalized space-time fractional telegraph equation with composite and Riesz-Feller fractional derivatives. International Journal of Pure and Applied Mathematics 83(5), 685-691 (2013). http://dx.doi.org/10.12732/ijpam.v83i5.2

  33. Vieira, N., Rodrigues, M.M., Ferreira, M.: Time-fractional telegraph equation of distributed order in higher dimensions with Hilfer fractional derivatives. Electronic Research Archive 30(10), 3595-3631. DOI: https://doi.org/10.3934/era.2022184

  34. Camargo, R.F., Chiacchio, A.O., Oliveira, E.C.: Differentiation to fractional orders and the fractional telegraph equation. J. Math. Phys. 49, 033505 (2008). https://doi.org/10.1063/1.2890375

    Article  ADS  MathSciNet  Google Scholar 

  35. Arefin, M.A., Sadiya, U., Inc, M., Uddin, M.H.: Adequate soliton solutions to the space-time fractional telegraph equation and modified third-order KdV equation through a reliable technique. Optical and Quantum Electronics 54(5), (2022). DOI: https://doi.org/10.1007/s11082-022-03640-9

  36. Momani, S.: Analytic and approximate solutions of the space- and time-fractional telegraph equations. Appl. Math. Comput. 170, 1126–1134 (2005)

    MathSciNet  Google Scholar 

  37. Jordan, P.M.: Puri, A. Digital signal propagation in dispersive media. J. Appl. Phys. 85, 1273-1282 (1999)

  38. Ford, N.J., Xiao, J., Yan, Y.: Stability of a numerical method for a space-time-fractional telegraph equation. Computational Methods in Applied Mathematics 12(3), 273–288 (2012). https://doi.org/10.2478/cmam-2012-0009

  39. Kabanikhin, S.I.: Inverse and Ill-Posed Problems. Theory and Applications. De Gruyter, Berlin (2011)

    Book  Google Scholar 

  40. Lopushanska, H., Rapita, V.: Inverse Cauchy problem for fractional telegraph equations with distributions. Carpathian Math. Publ. 8(1), 118–126 (2016). https://doi.org/10.15330/cmp.8.1.118-126

    Article  MathSciNet  Google Scholar 

  41. Lopushanska, H., Rapita, V.: Inverse coefficient problem for the semi-linear fractional telegraph equation. Electronic Journal of Differential Equations 2015(153), 1–13 (2015)

    MathSciNet  Google Scholar 

  42. Ashurov, R., Muhiddinova, O.: Initial-boundary value problem for a time-fractional subdiffusion equation with an arbitrary elliptic differential operator. Lobachevskii Journal of Mathematics 42(3), 517–525 (2021)

  43. Ashurov, R., Muhiddinova, O.: Inverse problem of determining the heat source density for the subdiffusion equation. Differential Equations 56(12), 1550–1563 (2020)

    Article  MathSciNet  Google Scholar 

  44. Kirane, M., Samet, B., Torebek, B.T.: Determination of an unknown source term and the temperature distribution for the subdiffusion equation at the initial and final data. Electron. J. Differ. Equat. 2017(257), 1–13 (2017)

  45. Ruzhansky, M., Tokmagambetov, N., Torebek, B.T.: Inverse source problems for positive operators. I: Hypoelliptic diffusion and subdiffusion equations. J. Inverse Ill-Posed Probl. 27(6), 891-911 (2019). DOI: https://doi.org/10.1515/jiip-2019-0031

  46. Abdullaev, OKh., Yuldashev, T.K.: Inverse problems for the loaded parabolic-hyperbolic equation involves Riemann-Liouville operator. Lobachevskii Journal of Mathematics 44(3), 1080–1090 (2023)

    Article  MathSciNet  Google Scholar 

  47. Yuldashev, T.K., Fayziyev A.K.: Inverse problem for a second order impulsive system of integro-differential equations with two redefinition vectors and mixed maxima. Nanosystems: Physics, Chemistry, Mathematics 14(1), 13-21 (2023)

  48. Abdullaev, OKh., Salmanov, OSh., Yuldashev, T.K.: Direct and inverse problems for a parabolic-hyperbolic equation involving Riemann-Liouville derivatives. Transactions Issue Mathematics, Azerbaijan National Academy of Sciences 43(1), 21–33 (2023)

    Google Scholar 

  49. Il’in, V.A.: On the solvability of mixed problems for hyperbolic and parabolic equations. Russ. Math. Surv. 15, 85–142 (1960)

    Article  MathSciNet  Google Scholar 

  50. Giusti, A., Colombaro, I., Garra, R., Garrappa, R., Polito, F., Popolizio, M., Mainardi, F.: A Practical guide to Prabhakar fractional calculus. Fract. Calc. Appl. Anal. 23, 9–54 (2020). https://doi.org/10.1515/fca-2020-0002

  51. Djrbashian, M.M.: Integral Transforms and Representation of Functions in the Complex Domain. Nauka, Moscow (1966). ( in Russian)

  52. Pang, D., Jiang, W., Niazi A.U.K.: Fractional derivatives of the generalized Mittag-Leffler functions. Advances in Difference Equations 1(2018) DOI: https://doi.org/10.1186/s13662-018-1855-9

  53. Kilbas, A.A., Srivastava, H., Trujillo, J.J: Theory and Applications of Fractional Differential Equations. Amsterdam, North-Holland Mathematics Studies, Vol 204, Elsevier. (2006)

  54. Ashurov, R., Shakarova, M.: Time-Dependent Source Identification Problem for Fractional Schrodinger Type Equations. Lobachevskii Journal of Mathematics 43(2), 303–315 (2022). https://doi.org/10.1134/S1995080222050055

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to A. O. Ashyralyev for posing the problem and they convey thanks to Sh. A. Alimov for discussions of these results. We acknowledge financial support from the Ministry of Innovative Development of the Republic of Uzbekistan, Grant No F-FA-2021-424.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravshan Ashurov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashurov, R., Saparbayev, R. Time-dependent identification problem for a fractional Telegraph equation with the Caputo derivative. Fract Calc Appl Anal 27, 652–676 (2024). https://doi.org/10.1007/s13540-024-00240-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13540-024-00240-0

Keywords

Mathematics Subject Classification

Navigation