Skip to main content
Log in

Securing Network Resilience: Leveraging Node Centrality for Cyberattack Mitigation and Robustness Enhancement

  • Published:
Information Systems Frontiers Aims and scope Submit manuscript

Abstract

In response to the dynamic and ever-evolving landscape of network attacks and cybersecurity, this study aims to enhance network security by identifying critical nodes and optimizing resource allocation within budget constraints. We introduce a novel approach leveraging node centrality scores from four widely-recognized centrality measures. Our unique contribution lies in converting these centrality metrics into actionable insights for identifying network attack probabilities, providing an unconventional yet effective method to bolster network robustness. Additionally, we propose a closed-form expression correlating network robustness with node-centric features, including importance scores and attack probabilities. At the core of our approach lies the development of a nonlinear optimization model that integrates predictive insights into node attack likelihood. Through this framework, we successfully determine an optimal resource allocation strategy, minimizing cyberattack risks on critical nodes while maximizing network robustness. Numerical results validate our approach, offering further insights into network dynamics and improved resilience against emerging cybersecurity threats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1
Algorithm 2
Fig. 3
Fig. 4
Algorithm 3

Similar content being viewed by others

Availability of data and materials

We used data to generate the network in Fig. 2. We referenced the site from where the data was obtained in Section 3 per the publisher requirement posted on the website (https://networkrepository.com/networks.php). Here is the statement they posted:

Code Availibility

It is available and it will be uploaded to the journal repository and to Github once the paper is accepted.

Notes

  1. d: degree, c: closeness, b: betweenness, e: eigenvector centrality methods

References

  • Ahmed, M., Mahmood, A. N., & Hu, J. (2016). A survey of network anomaly detection techniques. Journal of Network and Computer Applications, 60, 19–31.

    Article  Google Scholar 

  • Alozie, G. U., Arulselvan, A., Akartunalı, K., & Pasiliao, E. L., Jr. (2021). Efficient methods for the distancebased critical node detection problem in complex networks. Computers and Operations Research, 131, 105254.

    Article  Google Scholar 

  • Alozie, G. U., Arulselvan, A., Akartunalı, K., & Pasiliao, E. L., Jr. (2022). A heuristic approach for the distance-based critical node detection problem in complex networks. Journal of the Operational Research Society, 73(6), 1347–1361.

    Article  Google Scholar 

  • Aringhieri, R., Grosso, A., Hosteins, P., & Scatamacchia, R. (2016). A general evolutionary framework for different classes of critical node problems. Engineering Applications of Artificial Intelligence, 55, 128–145.

    Article  Google Scholar 

  • Arulselvan, A. (2009). Network model for disaster management. PhD thesis, University of Florida Gainesville.

  • Arulselvan, A., Commander, C., Elefteriadou, L., & Pardalos, P. (2009a). Detecting critical nodes in sparse graphs. Computers and Operations Research, 36, 2193–2200.

    Article  MathSciNet  Google Scholar 

  • Arulselvan, A., Commander, C. W., Elefteriadou, L., & Pardalos, P. M. (2009b). Detecting critical nodes in sparse graphs. Computers and Operations Research, 36(7), 2193–2200.

    Article  MathSciNet  Google Scholar 

  • Ballinger, O. (2023). Insurgency as complex network: Image co-appearance and hierarchy in the pkk. Social Networks, 74, 182–205.

    Article  Google Scholar 

  • Berger, A., Grigoriev, A., & van der Zwaan, R. (2014). Complexity and approximability of the k-way vertex cut. Networks, 63(2), 170–178.

    Article  MathSciNet  Google Scholar 

  • Cai, M., Liu, J., & Cui, Y. (2021). Network robustness analysis based on maximum flow. Frontiers in Physics, 9, 792410.

    Article  Google Scholar 

  • Commander, C. W., Pardalos, P. M., Ryabchenko, V., Uryasev, S., & Zrazhevsky, G. (2007). The wireless network jamming problem. Journal of Combinatorial Optimization, 14, 481–498.

    Article  MathSciNet  Google Scholar 

  • Dang, F., Zhao, X., Yan, L., Wu, K., Li, S. (2023). Research on network intrusion response method based on bayesian attack graph. In 2023 3rd International Conference on Consumer Electronics and Computer Engineering (ICCECE) (pp. 639–645). IEEE.

  • Das, K., Samanta, S., & Pal, M. (2018). Study on centrality measures in social networks: a survey. Social Network Analysis And Mining, (13).

  • Davis, J. E., Kolozsvary, M. B., Pajerowska-Mukhtar, K. M., & Zhang, B. (2021). Toward a universal theoretical framework to understand robustness and resilience: from cells to systems. Frontiers in Ecology and Evolution, 8, 579098.

  • Deng, Y., Mo, H. (2019). Identifying node importance based on evidence theory in complex networks. Physica A: Statistical Mechanics and its Applications, 529.

  • Devkota, P., Danzi, M. C., & Wuchty, S. (2018). Beyond degree and betweenness centrality: Alternative topological measures to predict viral targets. PloS one, 13(5), e0197595.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dinh, T. N., & Thai, M. T. (2011). Precise structural vulnerability assessment via mathematical programming. In 2011-MILCOM 2011 Military Communications Conference (pp. 1351–1356). IEEE.

  • Dinh, T. N., Xuan, Y., Thai, M. T., Park, E. K., & Znati, T. (2010). On approximation of new optimization methods for assessing network vulnerability. In 2010 Proceedings IEEE INFOCOM (pp. 1–9). IEEE.

  • Faramondi, L., Oliva, G., Pascucci, F., Panzieri, S., & Setola, R. (2016). Critical node detection based on attacker preferences. In 2016 24th Mediterranean Conference on Control and Automation (MED) (pp. 773–778). IEEE.

  • Faramondi, L., Oliva, G., Setola, R., Pascucci, F., Amideo, A. E., & Scaparra, M. P. (2017). Performance analysis of single and multiobjective approaches for the critical node detection problem. In Optimization and Decision Science: Methodologies and Applications: ODS, Sorrento, Italy, September 4-7, 2017 47 (pp. 315–324). Springer.

  • Fernandes, J. M., Suzuki, G. M., Zhao, L., & Carneiro, M. G. (2023). Data classification via centrality measures of complex networks. In 2023 International Joint Conference on Neural Networks (IJCNN) (pp. 1–8).

  • Freeman, L. C. (1978). Centrality in social networks conceptual clarification. Social Network, 1, 215.

  • Ganguli, R., Mehta, A., Debnath, N. C., Aljahdali, S., & Sen, S. (2020). An integrated framework for friend recommender system using graph theoretic approach. Proceedings of 35th International Confer, 69, 242–255.

  • Ghayoori, A., & Leon-Garcia, A. (2013). Robust network design. In 2013 IEEE International Conference on Communications (ICC) (pp. 2409–2414). IEEE.

  • Golbeck, J. (2013). Chapter 3 network structure and measures. Morgan Kaufmann (pp. 25–44).

  • Gouvy, N., Hamouda, E., Mitton, N., & Simplot-Ryl, D. (2012). Minimizing energy consumption through mobility with connectivity preservation in sensor networks. International Journal of Parallel, Emergent and Distributed Systems, 27(6), 521–540.

    Article  Google Scholar 

  • Gupta, B. B., Gaurav, A., Marín, E. C., & Alhalabi, W. (2023). Novel graph-based machine learning technique to secure smart vehicles in intelligent transportation systems. IEEE Transactions on Intelligent Transportation Systems, 24(8), 8483–8491.

    Article  Google Scholar 

  • Hamouda, E. (2024). A critical node-centric approach to enhancing network security. In Lecture Notes in Computer Science, vol 14321 (pp. 1–15). Springer Nature Switzerland AG.

  • Hamouda, E., Mitton, N., & Simplot-Ryl, D. (2011). Energy efficient mobile routing in actuator and sensor networks with connectivity preservation. (pp. 15–28) 01.

  • Helmi, R. A. A., Elghanuni, R. H., & Abdullah, M. I. (2021). Effect the graph metric to detect anomalies and non-anomalies on facebook using machine learning models. In 2021 IEEE 12th Control and System Graduate Research Colloquium (ICSGRC) (pp. 7–12). IEEE.

  • Imran, M., Alnuem, M. A., Fayed, M. S., & Alamri, A. (2013). Localized algorithm for segregation of critical/non-critical nodes in mobile ad hoc and sensor networks. Procedia Computer Science, 19, 1167–1172. The 4th International Conference on Ambient Systems, Networks and Technologies (ANT 2013), the 3rd International Conference on Sustainable Energy Information Technology (SEIT-2013).

  • Invernizzi, L., Miskovic, S., Torres, R., Saha, S., Lee, S.-J., Kruegel, C., & Vigna, G. (2014). Nazca: Detecting malware distribution in large-scale networks. In Proceedings of the 21st Symposium on Network and Distributed System Security Symposium, February

  • Jain, A., & Reddy, B. V. R. (2013). Node centrality in wireless sensor networks: Importance, applications and advances. (pp. 127–131).

  • Johnson, J. R., & Hogan, E. A. (2013). A graph analytic metric for mitigating advanced persistent threat. In 2013 IEEE International Conference on Intelligence and Security Informatics (pp. 129–133). IEEE.

  • Ke, L., Fang, X., & Fang, N. (2022). Pn-bbn: A petri net-based bayesian network for anomalous behavior detection. Mathematics, 10(20), 3790.

    Article  Google Scholar 

  • Kim, S. (2020). Anatomy on malware distribution networks. IEEE Access, 8, 73919–73930.

    Article  Google Scholar 

  • Kim, S., Kim, J., & Kang, B. B. (2018). Malicious url protection based on attackers’ habitual behavioral analysis. Computer Security, 77, 790–806.

    Article  Google Scholar 

  • Kivimäki, I., Lebichot, B., Saramäki, J., & Saerens, M. (2016). Two betweenness centrality measures based on randomized shortest paths. Scientific reports, 6(1), 1–15.

    Article  Google Scholar 

  • Laha, M., Kamble, S., & Datta, R. (2020). Edge nodes placement in 5g enabled urban vehicular networks: A centrality-based approach. In 2020 National Conference on Communications (NCC) (pp. 1–6). IEEE.

  • Lalou, H. K. M., & Tahraoui, M. A. (2018). The critical node detection problem in networks: A survey. Computer Science Review, 28, 92–117.

    Article  MathSciNet  Google Scholar 

  • Lalou, M., Tahraoui, M. A., & Kheddouci, H. (2018). The critical node detection problem in networks: A survey. Computer Science Review, 28, 92–117.

    Article  MathSciNet  Google Scholar 

  • Lalou, M., Tahraoui, M. A., & Kheddouci, H. (2018a). The critical node detection problem in networks: A survey. Computer Science Review, 28, 92–117.

    Article  MathSciNet  Google Scholar 

  • Liu, X., Hong, Z., & Rodríguez-Patón, A., Zou, Q., Zeng, X., Liu, J., Lin, Y. (2020). Computational methods for identifying the critical nodes in biological networks, briefings in bioinformatics. 21, 486–497.

  • Liu, J., Zhou, M., Wang, S., & Liu, P. (2017). A comparative study of network robustness measures. Frontiers of Computer Science, 11, 568–584.

    Article  Google Scholar 

  • Li, Y., Yang, X., Zhang, X., Xi, M., & Lai, X. (2022). An improved voterank algorithm to identifying a set of influential spreaders in complex networks. Frontiers in Physics, 10, 955727.

    Article  ADS  Google Scholar 

  • Lou, Y., Wang, L., & Guanrong, C. (2023). Structural robustness of complex networks: A survey of a posteriori measures [feature]. IEEE Circuits and Systems Magazine, 23(1), 12–35.

    Article  Google Scholar 

  • Lozano, M., Garcia-Martinez, C, Rodriguez, F. J., & Trujillo, H. M. (2017). Optimizing network attacks by artificial bee colony. Information Sciences, 377, 30–50.

  • Majeed, A., & Rauf, I. (2020). Graph theory: A comprehensive survey about graph theory applications in computer science and social networks. Inventions, 5(1), 10.

    Article  Google Scholar 

  • Mazlumi, S. H. H., & Kermani, M. A. M. (2022). Investigating the structure of the internet of things patent network using social network analysis. IEEE Internet of Things Journal,9(15), 13458–13469.

  • Megzari, A., Pravija Raj, P. V., Osamy, W, & Khedr, A. M. (2023). Applications, challenges, and solutions to single-and multi-objective critical node detection problems: a survey. The Journal of Supercomputing (pp. 1–39).

  • Mitchell, C., Agrawal, R., & Parker, J. (2019). The effectiveness of edge centrality measures for anomaly detection. (pp. 5022–5027).

  • Mitton, N., Pavkovic, B.,-Simplot-Ryl, D., & Hamouda, E. (2009). Energy-aware georouting with guaranteed delivery in wireless sensor networks with obstacles. International Journal of Wireless Information Networks, 16, 142–153.

  • Powell, J., & Hopkins, M. (2015). A librarian’s guide to graphs, data and the semantic web.

  • Proselkov, Y., Herrera, M., Parlikad, A. K., & Brintrup, A. (2021). Distributed dynamic measures of criticality for telecommunication networks. In Service Oriented, Holonic and Multi-Agent Manufacturing Systems for Industry of the Future: Proceedings of SOHOMA 2020 (pp. 421–432). Springer.

  • Rains, H. (2022). Dark Networks: An Exploration of the Ties that Bind Insurgent Groups and Shape Illicit Behavior. PhD thesis, University of Kansas.

  • Rajalakshmi, K., Sambath, M., Joseph, L., Ramesh, K., & Surendiran, R. (2023). An effective approach for improving data access time using intelligent node selection model (insm) in cloud computing environment.

  • Riquelme, F., & Vera, J.-A. (2022). A parameterizable influence spread-based centrality measure for influential users detection in social networks. Knowledge-Based Systems, 257, 109922.

    Article  Google Scholar 

  • Rodrigues, F. A. (2019). Network centrality: an introduction. A mathematical modeling approach from nonlinear dynamics to complex systems (pp. 177–196).

  • Ryan, A. (2015). Rossi and Nesreen K. In AAAI: Ahmed. The network data repository with interactive graph analytics and visualization.

    Google Scholar 

  • Sariyüce, A. E., Kaya, K., Saule, E, & Çatalyiirek,Ü. V. (2013). Incremental algorithms for closeness centrality. In 2013 IEEE International Conference on Big Data, (pp. 487–492). IEEE.

  • Shen, Y., Dinh, T. N., & Thai, M. T. (2012a). Adaptive algorithms for detecting critical links and nodes in dynamic networks. In MILCOM 2012-2012 IEEE Military Communications Conference (pp. 1–6). IEEE.

  • Shen, Y., Nguyen, N. P., Xuan, Y., & Thai, M. T. (2012b). On the discovery of critical links and nodes for assessing network vulnerability. IEEE/ACM Transactions on Networking, 21(3), 963–973.

    Article  Google Scholar 

  • Shen, Y., Nguyen, N., Xuan, Y., & Thai, M. (2013). On the discovery of critical links and nodes for assessing network vulnerability. Networking, IEEE/ACM Transactions on, 21, 963–973.

    Article  Google Scholar 

  • Shi, W., Shi, X., Wang, K., Liu, J., & Xiong, Q. (2016). Evaluating the importance of nodes in complex networks. Physica A: Statistical Mechanics and its Applications, 452, 209–219.

    Article  ADS  Google Scholar 

  • Shukla, S. (2023). Angle based critical nodes detection (abcnd) for reliable industrial wireless sensor networks. Wireless Personal Communications, 130(2), 757–775.

    Article  PubMed  PubMed Central  Google Scholar 

  • Si, W., Mburano, B., Zheng, W. X., & Qiu, T. (2022). Measuring network robustness by average network flow. IEEE Transactions on Network Science and Engineering, 9(3), 1697–1712.

    Article  MathSciNet  Google Scholar 

  • Ugurlu, O. (2022). Comparative analysis of centrality measures for identifying critical nodes in complex networks. Journal of Computational Science, 62, 101738.

    Article  Google Scholar 

  • Ventresca, M., & Aleman, D. (2014). A derandomized approximation algorithm for the critical node detection problem. Computers and Operations Research, 43, 261–270.

    Article  MathSciNet  Google Scholar 

  • Veremyev, A., Prokopyev, O. A., & Pasiliao, E. L. (2015). Critical nodes for distance-based connectivity and related problems in graphs. Networks, 66(3), 170–195.

    Article  MathSciNet  Google Scholar 

  • Walteros, J. L., Veremyev, A., Pardalos, P. M., & Pasiliao, E. L. (2019). Detecting critical node structures on graphs: A mathematical programming approach. Networks, 73(1), 48–88.

    Article  MathSciNet  Google Scholar 

  • Wang, B., Jia, J., Zhang, L., & Gong, N. Z. (2018). Structure-based sybil detection in social networks via local rule-based propagation. IEEE Transactions on Network Science and Engineering, 6, 523–537.

    Article  MathSciNet  Google Scholar 

  • Xing, Y., Shu, H., & Kang, F. (2023). Peerremove: An adaptive node removal strategy for p2p botnet based on deep reinforcement learning. Computers and Security, 128, 103129.

    Article  Google Scholar 

  • Yan, G., Chen, G., Eidenbenz, S. J., & Li, N. (2011). Malware propagation in online social networks: nature, dynamics, and defense implications. In ACM Asia Conference on Computer and Communications Security.

  • Yang, H., & An, S. (2020). Critical nodes identification in complex networks. Symmetry, 12(1), 123.

    Article  ADS  Google Scholar 

  • Yen, C. -C., Yeh, M. -Y., & Chen, M. -S. (2013). An efficient approach to updating closeness centrality and average path length in dynamic networks. In 2013 IEEE 13th International Conference on Data Mining (pp. 867–876).

  • Yin, R., Yin, X., Cui, M., & Yinghan, X. (2019). Node importance evaluation method based on multi-attribute decision-making model in wireless sensor networks. EURASIP Journal on Wireless Communications and Networking, 2019(1), 1–14.

    Google Scholar 

  • Yong, Y., Zhou, B., Chen, L., Gao, T., & Liu, J. (2022). Identifying important nodes in complex networks based on node propagation entropy. Entropy, 24(2), 275.

    Article  ADS  MathSciNet  Google Scholar 

  • Zaki, A. A., Saleh, N. A., & Mahmoud, M. A. (2023). Performance comparison of some centrality measures used in detecting anomalies in directed social networks. Communications in Statistics-Simulation and Computation, 52(7), 3122–3136.

    Article  MathSciNet  Google Scholar 

  • Zhang, S., Yu, H. et al (2022). Modeling and simulation of tennis serve image path correction optimization based on deep learning. Wireless Communications and Mobile Computing, 2022.

  • Zheng, H., Xue, M., Lu, H., Hao, S., Zhu, H., Liang, X., & Ross, K. W. (2017). Smoke screener or straight shooter: Detecting elite sybil attacks in user-review social networks. arXiv:1709.06916

  • Zverovich, V. (2021). Modern applications of graph theory. Oxford University Press.

Download references

Acknowledgements

Not applicable

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

Dr. Hamouda and Dr. ElHafsi conceptualized the paper, developed mathematical models, and conducted numerical experiments and analysis. Dr. Son contributed to the paper’s conception, and the editorial aspect of the paper. All authors have read and approved the content of the manuscript.

Corresponding author

Correspondence to Essia Hamouda.

Ethics declarations

Ethics approval

Not applicable

Consent to participate

Not applicable

Consent for publication

Not applicable

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamouda, E., ElHafsi, M. & Son, J. Securing Network Resilience: Leveraging Node Centrality for Cyberattack Mitigation and Robustness Enhancement. Inf Syst Front (2024). https://doi.org/10.1007/s10796-024-10477-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10796-024-10477-y

Keywords

Navigation