Skip to content
Licensed Unlicensed Requires Authentication Published online by De Gruyter April 4, 2024

A critical overview on impact of different nano-catalytic assemblies for photodegradation of tetracycline

  • Rida Khalid , Muhammad Imran Din ORCID logo EMAIL logo and Zaib Hussain

Abstract

Recently, the removal of tetracycline, a toxic material, from aquatic medium has been a trending subject of research. Several different technologies including adsorption, biological removal method, solvent extraction, coagulation, chemical reduction, photocatalysis and ion exchange method for removal of tetracyclines from wastewater have been reported. However, photocatalysis of tetracyclines (TC) has gained huge interest because of more efficient mineralization of TC into CO2 and water. Several different nanomaterial based photocatalytic assemblies for the removal of tetracyclines have been widely reported for the removal of tetracyclines which have not been critically reviewed in the literature. This study provides an overview of recent progress of classification, synthesis, characterizations, mechanism of inorganic and metal organic framework nanocatalytic assemblies on photocatalysis of tetracyclines in aquatic medium. Additionally, kinetics and factors affecting the photocatalysis of tetracyclines have been discussed briefly. Future perspectives have also been presented for further advancement in this area.


Corresponding author: Muhammad Imran Din, School of Chemistry, University of the Punjab, New Campus Lahore 54590, Pakistan, E-mail:

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: Not applicable.

References

Adams, C., Wang, Y., Loftin, K., and Meyer, M. (2002). Removal of antibiotics from surface and distilled water in conventional water treatment processes. J. Environ. Eng. 128: 253–260, https://doi.org/10.1061/(asce)0733-9372(2002)128:3(253).10.1061/(ASCE)0733-9372(2002)128:3(253)Search in Google Scholar

Agafonova, N., Kaparullina, E., Doronina, N., and Trotsenko, Y.A. (2013). Phosphate-solubilizing activity of aerobic methylobacteria. Microbiology 82: 864–867, https://doi.org/10.1134/s0026261714010020.Search in Google Scholar

Ahadi, M., Tehrani, M.S., Azar, P.A., and Husain, S.W. (2016). Novel preparation of sensitized ZnS nanoparticles and its use in photocatalytic degradation of tetracycline. Int. J. Environ. Sci. Technol. 13: 2797–2804, https://doi.org/10.1007/s13762-016-1106-0.Search in Google Scholar

Ahmadi, M., Motlagh, H.R., Jaafarzadeh, N., Mostoufi, A., Saeedi, R., Barzegar, G., and Jorfi, S. (2017). Enhanced photocatalytic degradation of tetracycline and real pharmaceutical wastewater using MWCNT/TiO2 nano-composite. J. Environ. Manage. 186: 55–63, https://doi.org/10.1016/j.jenvman.2016.09.088.Search in Google Scholar PubMed

Alkaabi, M., Mohamed, M., Almanea, A., AlShehhi, M., Farousha, K., Yusuf, A., and Palmisano, G. (2022). Design of a microfluidic photocatalytic reactor for removal of volatile organic components: process simulation and techno-economic assessment. ACS Omega 7: 8306–8313, https://doi.org/10.1021/acsomega.1c05431.Search in Google Scholar PubMed PubMed Central

al Sadat Shafiof, M. and Nezamzadeh-Ejhieh, A. (2020). A comprehensive study on the removal of Cd (II) from aqueous solution on a novel pentetic acid-clinoptilolite nanoparticles adsorbent: experimental design, kinetic and thermodynamic aspects. Solid State Sci. 99: 106071, https://doi.org/10.1016/j.solidstatesciences.2019.106071.Search in Google Scholar

Alyani, S.J., Pirbazari, A.E., Khalilsaraei, F.E., Kolur, N.A., and Gilani, N. (2019). Growing Co-doped TiO2 nanosheets on reduced graphene oxide for efficient photocatalytic removal of tetracycline antibiotic from aqueous solution and modeling the process by artificial neural network. J. Alloys Compd. 799: 169–182, https://doi.org/10.1016/j.jallcom.2019.05.175.Search in Google Scholar

An, W., Yang, T., Liu, C., Hu, J., Cui, W., and Liang, Y. (2023). CuBi2O4 surface-modified three-dimensional graphene hydrogel adsorption and in situ photocatalytic Fenton synergistic degradation of organic pollutants. Appl. Surf. Sci. 615: 156396, https://doi.org/10.1016/j.apsusc.2023.156396.Search in Google Scholar

Astruc, D. (2020). Introduction: nanoparticles in catalysis. Chem. Rev. 120: 461–463, https://doi.org/10.1021/acs.chemrev.8b00696.Search in Google Scholar PubMed

Azimi, S. and Nezamzadeh-Ejhieh, A. (2015). Enhanced activity of clinoptilolite-supported hybridized PbS–CdS semiconductors for the photocatalytic degradation of a mixture of tetracycline and cephalexin aqueous solution. J. Mol. Catal. A: Chem. 408: 152–160, https://doi.org/10.1016/j.molcata.2015.07.017.Search in Google Scholar

Belhouchet, N., Hamdi, B., Chenchouni, H., and Bessekhouad, Y. (2019). Photocatalytic degradation of tetracycline antibiotic using new calcite/titania nanocomposites. J. Photochem. Photobiol., A 372: 196–205, https://doi.org/10.1016/j.jphotochem.2018.12.016.Search in Google Scholar

Beni, F.A., Gholami, A., Ayati, A., Shahrak, M.N., and Sillanpää, M. (2020). UV-switchable phosphotungstic acid sandwiched between ZIF-8 and Au nanoparticles to improve simultaneous adsorption and UV light photocatalysis toward tetracycline degradation. Microporous Mesoporous Mater. 303: 110275, https://doi.org/10.1016/j.micromeso.2020.110275.Search in Google Scholar

Bhangi, B.K. and Ray, S. (2023). Adsorption and photocatalytic degradation of tetracycline from water by kappa-carrageenan and iron oxide nanoparticle-filled poly (acrylonitrile-co-N-vinyl pyrrolidone) composite gel. Sci. China Technol. Sci. 63: 249–266, https://doi.org/10.1002/pen.26202.Search in Google Scholar

Cao, M., Wang, P., Ao, Y., Wang, C., Hou, J., and Qian, J. (2016). Visible light activated photocatalytic degradation of tetracycline by a magnetically separable composite photocatalyst: graphene oxide/magnetite/cerium-doped titania. J. Colloid Interface Sci. 467: 129–139, https://doi.org/10.1016/j.jcis.2016.01.005.Search in Google Scholar PubMed

Cao, H.-L., Cai, F.-Y., Yu, K., Zhang, Y.-Q., Lü, J., and Cao, R. (2019). Photocatalytic degradation of tetracycline antibiotics over CdS/nitrogen-doped–carbon composites derived from in situ carbonization of metal–organic frameworks. ACS Sustain. Chem. Eng. 7: 10847–10854, https://doi.org/10.1021/acssuschemeng.9b01685.Search in Google Scholar

Chang, P.-H., Jiang, W.-T., Li, Z., Jean, J.-S., and Kuo, C.-Y. (2015). Antibiotic tetracycline in the environments – a review. Res. Rev. J. Pharm. Anal. 4: 86–111.Search in Google Scholar

Chen, A., Lu, G., Tao, Y., Dai, Z., and Gu, H. (2001). Novel photocatalyst immobilized on springs and packed photoreactor. Mater. Phys. Mech. 4: 121–124.Search in Google Scholar

Chen, F., Yang, Q., Li, X., Zeng, G., Wang, D., Niu, C., Zhao, J., An, H., Xie, T., and Deng, Y. (2017). Hierarchical assembly of graphene-bridged Ag3PO4/Ag/BiVO4 (040) Z-scheme photocatalyst: an efficient, sustainable and heterogeneous catalyst with enhanced visible-light photoactivity towards tetracycline degradation under visible light irradiation. Appl. Catal. B 200: 330–342, https://doi.org/10.1016/j.apcatb.2016.07.021.Search in Google Scholar

Chen, J., Xiao, X., Wang, Y., Lu, M., and Zeng, X. (2019). Novel AgI/BiOBr/reduced graphene oxide Z-scheme photocatalytic system for efficient degradation of tetracycline. J. Alloys Compd. 800: 88–98, https://doi.org/10.1016/j.jallcom.2019.06.004.Search in Google Scholar

Chen, D.-D., Yi, X.-H., Zhao, C., Fu, H., Wang, P., and Wang, C.-C. (2020a). Polyaniline modified MIL-100 (Fe) for enhanced photocatalytic Cr (VI) reduction and tetracycline degradation under white light. Chemosphere 245: 125659, https://doi.org/10.1016/j.chemosphere.2019.125659.Search in Google Scholar PubMed

Chen, J., Xu, X., Feng, L., He, A., Liu, L., Li, X., Khan, S., and Chen, Y. (2020b). One-step MOF assisted synthesis of SmVO4 nanorods for photocatalytic degradation of tetracycline under visible light. Mater. Lett. 276: 128213, https://doi.org/10.1016/j.matlet.2020.128213.Search in Google Scholar

Chen, J., Zhang, X., Bi, F., Zhang, X., Yang, Y., and Wang, Y. (2020c). A facile synthesis for uniform tablet-like TiO2/C derived from materials of institut lavoisier-125 (Ti)(MIL-125 (Ti)) and their enhanced visible light-driven photodegradation of tetracycline. J. Colloid Interface Sci. 571: 275–284, https://doi.org/10.1016/j.jcis.2020.03.055.Search in Google Scholar PubMed

Chen, J., Zhang, X., Shi, X., Bi, F., Yang, Y., and Wang, Y. (2020d). Synergistic effects of octahedral TiO2-MIL-101 (Cr) with two heterojunctions for enhancing visible-light photocatalytic degradation of liquid tetracycline and gaseous toluene. J. Colloid Interface Sci. 579: 37–49, https://doi.org/10.1016/j.jcis.2020.06.042.Search in Google Scholar PubMed

Chu, X., Shan, G., Chang, C., Fu, Y., Yue, L., and Zhu, L. (2016). Effective degradation of tetracycline by mesoporous Bi2WO6 under visible light irradiation. Front. Environ. Sci. Eng. 10: 211–218, https://doi.org/10.1007/s11783-014-0753-y.Search in Google Scholar

Crini, G. and Lichtfouse, E. (2019). Advantages and disadvantages of techniques used for wastewater treatment. Environ. Chem. Lett. 17: 145–155, https://doi.org/10.1007/s10311-018-0785-9.Search in Google Scholar

Daghrir, R. and Drogui, P. (2013). Tetracycline antibiotics in the environment: a review. Environ. Chem. Lett. 11: 209–227, https://doi.org/10.1007/s10311-013-0404-8.Search in Google Scholar

Dai, W., Jiang, L., Wang, J., Pu, Y., Zhu, Y., Wang, Y., and Xiao, B. (2020). Efficient and stable photocatalytic degradation of tetracycline wastewater by 3D polyaniline/perylene diimide organic heterojunction under visible light irradiation. Chem. Eng. J. 397: 125476, https://doi.org/10.1016/j.cej.2020.125476.Search in Google Scholar

Derikvandi, H. and Nezamzadeh-Ejhieh, A. (2017a). Increased photocatalytic activity of NiO and ZnO in photodegradation of a model drug aqueous solution: effect of coupling, supporting, particles size and calcination temperature. J. Hazard. Mater. 321: 629–638, https://doi.org/10.1016/j.jhazmat.2016.09.056.Search in Google Scholar PubMed

Derikvandi, H. and Nezamzadeh-Ejhieh, A. (2017b). Designing of experiments for evaluating the interactions of influencing factors on the photocatalytic activity of NiS and SnS2: focus on coupling, supporting and nanoparticles. J. Colloid Interface Sci. 490: 628–641, https://doi.org/10.1016/j.jcis.2016.11.102.Search in Google Scholar PubMed

Derikvandi, H. and Nezamzadeh-Ejhieh, A. (2017c). Synergistic effect of pn heterojunction, supporting and zeolite nanoparticles in enhanced photocatalytic activity of NiO and SnO2. J. Colloid Interface Sci. 490: 314–327, https://doi.org/10.1016/j.jcis.2016.11.069.Search in Google Scholar PubMed

Derikvandi, H. and Nezamzadeh-Ejhieh, A. (2017d). A comprehensive study on enhancement and optimization of photocatalytic activity of ZnS and SnS2: response surface methodology (RSM), nn heterojunction, supporting and nanoparticles study. J. Photochem. Photobiol. A 348: 68–78, https://doi.org/10.1016/j.jphotochem.2017.08.007.Search in Google Scholar

Derikvandi, H. and Nezamzadeh-Ejhieh, A. (2017e). Comprehensive study on enhanced photocatalytic activity of heterojunction ZnS-NiS/zeolite nanoparticles: experimental design based on response surface methodology (RSM), impedance spectroscopy and GC-MASS studies. J. Colloid Interface Sci. 490: 652–664, https://doi.org/10.1016/j.jcis.2016.11.105.Search in Google Scholar PubMed

Derikvandi, H. and Nezamzadeh-Ejhieh, A. (2017f). A comprehensive study on electrochemical and photocatalytic activity of SnO2-ZnO/clinoptilolite nanoparticles. J. Mol. Catal. A Chem. 426: 158–169, https://doi.org/10.1016/j.molcata.2016.11.011.Search in Google Scholar

Derikvandi, H., Vosough, M., and Nezamzadeh-Ejhieh, A. (2020). A comprehensive study on the enhanced photocatlytic activity of a double-shell mesoporous plasmonic Cu@Cu2O/SiO2 as a visible-light driven nanophotocatalyst. Environ. Sci. Pollut. Res. 27: 27582–27597, https://doi.org/10.1007/s11356-020-08817-x.Search in Google Scholar PubMed

Derikvandi, H., Vosough, M., and Nezamzadeh-Ejhieh, A. (2021). A novel double Ag@ AgCl/Cu@Cu2O plasmonic nanostructure: experimental design and LC-Mass detection of tetracycline degradation intermediates. Int. J. Hydrogen Energy 46: 2049–2064, https://doi.org/10.1016/j.ijhydene.2020.10.065.Search in Google Scholar

Din, M.I., Khalid, R., Hussain, Z., Hussain, T., Mujahid, A., Najeeb, J., and Izhar, F. (2020a). Nanocatalytic assemblies for catalytic reduction of nitrophenols: a critical review. Crit. Rev. Anal. Chem. 50: 322–338, https://doi.org/10.1080/10408347.2019.1637241.Search in Google Scholar PubMed

Din, M.I., Khalid, R., Hussain, Z., Najeeb, J., Sahrif, A., Intisar, A., and Ahmed, E. (2020b). Critical review on the chemical reduction of nitroaniline. RSC Adv. 10: 19041–19058, https://doi.org/10.1039/d0ra01745k.Search in Google Scholar PubMed PubMed Central

Dobrosz-Gómez, I. and Gómez-García, M. (2022). Treatment of soluble coffee industrial effluent by electro-coagulation–electro-oxidation process: multiobjective optimization and kinetic study. Int. J. Environ. Sci. Technol. 19: 6071–6088, https://doi.org/10.1007/s13762-021-03562-1.Search in Google Scholar

Dong, W., Wang, D., Wang, H., Li, M., Chen, F., Jia, F., Yang, Q., Li, X., Yuan, X., Gong, J., et al.. (2019). Facile synthesis of In2S3/UiO-66 composite with enhanced adsorption performance and photocatalytic activity for the removal of tetracycline under visible light irradiation. J. Colloid Interface Sci. 535: 444–457, https://doi.org/10.1016/j.jcis.2018.10.008.Search in Google Scholar PubMed

Du, Q., Wu, P., Sun, Y., Zhang, J., and He, H. (2020). Selective photodegradation of tetracycline by molecularly imprinted ZnO@ NH2-UiO-66 composites. Chem. Eng. J. 390: 124614, https://doi.org/10.1016/j.cej.2020.124614.Search in Google Scholar

Duong, T.-N.-B. and Le, M.-V. (2019). High efficiency degradation of tetracycline antibiotic with TiO2-SiO2 photocatalyst under low power of simulated solar light irradiation. AIP Conf. Proc. 2085: 020020, https://doi.org/10.1063/1.5094998.Search in Google Scholar

Duruibe, J.O., Ogwuegbu, M., and Egwurugwu, J. (2007). Heavy metal pollution and human biotoxic effects. Int. J. Phys. Sci. 2: 112–118.Search in Google Scholar

Ejhieh, A.N. and Khorsandi, M. (2010). Photodecolorization of eriochrome black T using NiS–P zeolite as a heterogeneous catalyst. J. Hazard. Mater. 176: 629–637, https://doi.org/10.1016/j.jhazmat.2009.11.077.Search in Google Scholar PubMed

Eshraghi, F. and Nezamzadeh-Ejhieh, A. (2018). EDTA-functionalized clinoptilolite nanoparticles as an effective adsorbent for Pb (II) removal. Environ. Sci. Pollut. Res. 25: 14043–14056, https://doi.org/10.1007/s11356-018-1461-0.Search in Google Scholar PubMed

Fakhri, H. and Bagheri, H. (2020). Highly efficient Zr-MOF@ WO3/graphene oxide photocatalyst: synthesis, characterization and photodegradation of tetracycline and malathion. Mater. Sci. Semicond. Proc. 107: 104815, https://doi.org/10.1016/j.mssp.2019.104815.Search in Google Scholar

Farhadian, N., Akbarzadeh, R., Pirsaheb, M., Jen, T.-C., Fakhri, Y., and Asadi, A. (2019). Chitosan modified N, S-doped TiO2 and N, S-doped ZnO for visible light photocatalytic degradation of tetracycline. Int. J. Biol. Macromol. 132: 360–373, https://doi.org/10.1016/j.ijbiomac.2019.03.217.Search in Google Scholar PubMed

Foroughipour, M. and Nezamzadeh-Ejhieh, A. (2023). CaTiO3/g-C3N4 heterojunction-based composite photocatalyst: part I: experimental design, kinetics, and scavenging agents’ effects in photocatalytic degradation of gemifloxacin. Chemosphere 334: 139019, https://doi.org/10.1016/j.chemosphere.2023.139019.Search in Google Scholar PubMed

Gafoor, A., Ali, N., Kumar, S., Begum, S., Rahman, Z., and Rahman, Z. (2021). Applicability and new trends of different electrode materials and its combinations in electro coagulation process: a brief review. Mater. Today: Proc. 37: 377–382, https://doi.org/10.1016/j.matpr.2020.05.379.Search in Google Scholar

Gao, B., Chen, W., Liu, J., An, J., Wang, L., Zhu, Y., and Sillanpää, M. (2018). Continuous removal of tetracycline in a photocatalytic membrane reactor (PMR) with ZnIn2S4 as adsorption and photocatalytic coating layer on PVDF membrane. J. Photochem. Photobiol. A 364: 732–739, https://doi.org/10.1016/j.jphotochem.2018.07.008.Search in Google Scholar

Gao, B., Zhou, J., Wang, H., Zhang, G., He, J., Xu, Q., Li, N., Chen, D., Li, H., and Lu, J. (2019). Zeolitic imidazolate framework 8-derived Au@ ZnO for efficient and robust photocatalytic degradation of tetracycline. Chin. J. Chem. 37: 148–154, https://doi.org/10.1002/cjoc.201800440.Search in Google Scholar

Gao, Y., Wu, J., Wang, J., Fan, Y., Zhang, S., and Dai, W. (2020). A novel multifunctional p-type semiconductor@ MOFs nanoporous platform for simultaneous sensing and photodegradation of tetracycline. ACS Appl. Mater. Interfaces 12: 11036–11044, https://doi.org/10.1021/acsami.9b23314.Search in Google Scholar PubMed

Ghattavi, S. and Nezamzadeh-Ejhieh, A. (2020a). GC-MASS detection of methyl orange degradation intermediates by AgBr/g-C3N4: experimental design, bandgap study, and characterization of the catalyst. Int. J. Hydrogen Energy 45: 24636–24656, https://doi.org/10.1016/j.ijhydene.2020.06.207.Search in Google Scholar

Ghattavi, S. and Nezamzadeh-Ejhieh, A. (2020b). A visible light driven AgBr/g-C3N4 photocatalyst composite in methyl orange photodegradation: focus on photoluminescence, mole ratio, synthesis method of g-C3N4 and scavengers. Compos. B Eng. 183: 107712, https://doi.org/10.1016/j.compositesb.2019.107712.Search in Google Scholar

Giannakis, S. (2019). A review of the concepts, recent advances and niche applications of the (photo) Fenton process, beyond water/wastewater treatment: surface functionalization, biomass treatment, combatting cancer and other medical uses. Appl. Catal. B 248: 309–319, https://doi.org/10.1016/j.apcatb.2019.02.025.Search in Google Scholar

Guo, M., Yuan, B., Sui, Y., Xiao, Y., Dong, J., Yang, L., Bai, L., Yang, H., Wei, D., Wang, W., et al.. (2023). Rational design of molybdenum sulfide/tungsten oxide solar absorber with enhanced photocatalytic degradation toward dye wastewater purification. J. Colloid Interface Sci. 631: 33–43, https://doi.org/10.1016/j.jcis.2022.11.015.Search in Google Scholar PubMed

Hansima, M., Makehelwala, M., Jinadasa, K., Wei, Y., Nanayakkara, K., Herath, A.C., and Weerasooriya, R. (2021). Fouling of ion exchange membranes used in the electrodialysis reversal advanced water treatment: a review. Chemosphere 263: 127951, https://doi.org/10.1016/j.chemosphere.2020.127951.Search in Google Scholar PubMed

Hariganesh, S., Vadivel, S., Maruthamani, D., Kumaravel, M., Paul, B., Balasubramanian, N., and Vijayaraghavan, T. (2020). Facile large scale synthesis of CuCr2O4/CuO nanocomposite using MOF route for photocatalytic degradation of methylene blue and tetracycline under visible light. Appl. Organomet. Chem. 34: e5365, https://doi.org/10.1002/aoc.5365.Search in Google Scholar

He, X., Nguyen, V., Jiang, Z., Wang, D., Zhu, Z., and Wang, W.-N. (2018). Highly-oriented one-dimensional MOF-semiconductor nanoarrays for efficient photodegradation of antibiotics. Catal. Sci. Technol. 8: 2117–2123, https://doi.org/10.1039/c8cy00229k.Search in Google Scholar

He, L., Dong, Y., Zheng, Y., Jia, Q., Shan, S., and Zhang, Y. (2019a). A novel magnetic MIL-101 (Fe)/TiO2 composite for photo degradation of tetracycline under solar light. J. Hazard. Mater. 361: 85–94, https://doi.org/10.1016/j.jhazmat.2018.08.079.Search in Google Scholar PubMed

He, L., Zhang, Y., Zheng, Y., Jia, Q., Shan, S., and Dong, Y. (2019b). Degradation of tetracycline by a novel MIL-101 (Fe)/TiO2 composite with persulfate. J. Porous Mater. 26: 1839–1850, https://doi.org/10.1007/s10934-019-00778-y.Search in Google Scholar

Heidari, S., Haghighi, M., and Shabani, M. (2018). Ultrasound assisted dispersion of Bi2Sn2O7-C3N4 nanophotocatalyst over various amount of zeolite Y for enhanced solar-light photocatalytic degradation of tetracycline in aqueous solution. Ultrason. Sonochem. 43: 61–72, https://doi.org/10.1016/j.ultsonch.2018.01.001.Search in Google Scholar PubMed

Hemalatha, K., Madhumitha, G., Kajbafvala, A., Anupama, N., Sompalle, R., and Mohana, R.S. (2013). Function of nanocatalyst in chemistry of organic compounds revolution: an overview. J. Nanomater. 2013: 4, https://doi.org/10.1155/2013/341015.Search in Google Scholar

Hemmatpour, P. and Nezamzadeh-Ejhieh, A. (2022). A Z-scheme CdS/BiVO4 photocatalysis towards eriochrome black T: an experimental design and mechanism study. Chemosphere 307: 135925, https://doi.org/10.1016/j.chemosphere.2022.135925.Search in Google Scholar PubMed

Heng, S., Song, Q., Liu, S., Guo, H., Pang, J., Qu, X., Bai, Y., Li, L., and Dang, D. (2021). Construction of 2D polyoxoniobate/RGO heterojunction photocatalysts for the enhanced photodegradation of tetracycline. Appl. Surf. Sci. 553: 149505, https://doi.org/10.1016/j.apsusc.2021.149505.Search in Google Scholar

Hu, Q., Di, J., Wang, B., Ji, M., Chen, Y., Xia, J., Li, H., and Zhao, Y. (2019). In-situ preparation of NH2-MIL-125 (Ti)/BiOCl composite with accelerating charge carriers for boosting visible light photocatalytic activity. Appl. Surf. Sci. 466: 525–534, https://doi.org/10.1016/j.apsusc.2018.10.020.Search in Google Scholar

Huang, H., Jiang, L., Yang, J., Zhou, S., Yuan, X., Liang, J., Wang, H., Wang, H., Bu, Y., and Li, H. (2023). Synthesis and modification of ultrathin g-C3N4 for photocatalytic energy and environmental applications. Renew. Sustain. Energy Rev. 173: 113110, https://doi.org/10.1016/j.rser.2022.113110.Search in Google Scholar

Huo, P., Ye, Z., Wang, H., Guan, Q., and Yan, Y. (2017). Thermo-responsive PNIPAM@ AgBr/CSs composite photocatalysts for switchable degradation of tetracycline antibiotics. J. Alloys Compd. 696: 701–710, https://doi.org/10.1016/j.jallcom.2016.11.219.Search in Google Scholar

Ikhlef-Taguelmimt, T., Hamiche, A., Yahiaoui, I., Bendellali, T., Lebik-Elhadi, H., Ait-Amar, H., and Aissani-Benissad, F. (2020). Tetracycline hydrochloride degradation by heterogeneous photocatalysis using TiO2 (P25) immobilized in biopolymer (chitosan) under UV irradiation. Water Sci. Technol. 82: 1570–1578, https://doi.org/10.2166/wst.2020.432.Search in Google Scholar PubMed

Ishaq, M.T., Fazal, A., Ara, S., and Sughra, K. (2023). One-pot greener synthesis of zinc oxide nanoflowers using potato, cauliflower, and pea peel extract with antibacterial application. Chem. Phys. Lett. 810: 140186, https://doi.org/10.1016/j.cplett.2022.140186.Search in Google Scholar

Islam, M.A., Jacob, M.V., and Antunes, E. (2021). A critical review on silver nanoparticles: from synthesis and applications to its mitigation through low-cost adsorption by biochar. J. Environ. Manage. 281: 111918, https://doi.org/10.1016/j.jenvman.2020.111918.Search in Google Scholar PubMed

Itoh, K., Saida, J., and Otomo, T. (2020). Structural study of Ni67Zr33 amorphous alloy: interatomic space analysis approach. Mater. Chem. Phys. 240: 122214, https://doi.org/10.1016/j.matchemphys.2019.122214.Search in Google Scholar

Iwuozor, K.O. (2019). Prospects and challenges of using coagulation-flocculation method in the treatment of effluents. Adv. J. Chem. Sect. A 2: 105–127, https://doi.org/10.29088/sami/ajca.2019.2.105127.Search in Google Scholar

Jayachandran, N. and Peethambaran, L.D. (2015). Utilization of polypyrrole coated iron-doped titania based hydrogel for the removal of tetracycline hydrochloride from aqueous solutions: adsorption and photocatalytic degradation studies. Environ. Nanotechnol. Monit. Manag. 4: 106–117, https://doi.org/10.1016/j.enmm.2015.10.001.Search in Google Scholar

Jiang, L., Yang, J., Zhou, S., Yu, H., Liang, J., Chu, W., Li, H., Wang, H., Wu, Z., and Yuan, X. (2021a). Strategies to extend near-infrared light harvest of polymer carbon nitride photocatalysts. Coord. Chem. Rev. 439: 213947, https://doi.org/10.1016/j.ccr.2021.213947.Search in Google Scholar

Jiang, W., Li, Z., Liu, C., Wang, D., Yan, G., Liu, B., and Che, G. (2021b). Enhanced visible-light-induced photocatalytic degradation of tetracycline using BiOI/MIL-125 (Ti) composite photocatalyst. J. Alloys Compd. 854: 157166, https://doi.org/10.1016/j.jallcom.2020.157166.Search in Google Scholar

Jiang, L., Zhou, D., Yang, J., Zhou, S., Wang, H., Yuan, X., Liang, J., Li, X., Chen, Y., and Li, H. (2022a). 2D single-and few-layered MXenes: synthesis, applications and perspectives. J. Mater. Chem. A 10: 13651–13672, https://doi.org/10.1039/d2ta01572b.Search in Google Scholar

Jiang, L., Zhou, S., Yang, J., Wang, H., Yu, H., Chen, H., Zhao, Y., Yuan, X., Chu, W., and Li, H. (2022b). Near-infrared light responsive TiO2 for efficient solar energy utilization. Adv. Funct. Mater. 32: 2108977, https://doi.org/10.1002/adfm.202108977.Search in Google Scholar

Jin, P., Wang, L., Ma, X., Lian, R., Huang, J., She, H., Zhang, M., and Wang, Q. (2021). Construction of hierarchical ZnIn2S4@ PCN-224 heterojunction for boosting photocatalytic performance in hydrogen production and degradation of tetracycline hydrochloride. Appl. Catal. B 284: 119762, https://doi.org/10.1016/j.apcatb.2020.119762.Search in Google Scholar

Kakavandi, B., Bahari, N., Kalantary, R.R., and Fard, E.D. (2019). Enhanced sono-photocatalysis of tetracycline antibiotic using TiO2 decorated on magnetic activated carbon (MAC@ T) coupled with US and UV: a new hybrid system. Ultrason. Sonochem. 55: 75–85, https://doi.org/10.1016/j.ultsonch.2019.02.026.Search in Google Scholar PubMed

Karimi-Shamsabadi, M. and Nezamzadeh-Ejhieh, A. (2016). Comparative study on the increased photoactivity of coupled and supported manganese-silver oxides onto a natural zeolite nano-particles. J. Mol. Catal. A Chem. 418: 103–114, https://doi.org/10.1016/j.molcata.2016.03.034.Search in Google Scholar

Khodadadi, M., Ehrampoush, M., Ghaneian, M., Allahresani, A., and Mahvi, A. (2018). Synthesis and characterizations of FeNi3@ SiO2@TiO2 nanocomposite and its application in photo-catalytic degradation of tetracycline in simulated wastewater. J. Mol. Liq. 255: 224–232, https://doi.org/10.1016/j.molliq.2017.11.137.Search in Google Scholar

Khodadoost, S., Hadi, A., Karimi-Sabet, J., Mehdipourghazi, M., and Golzary, A. (2017). Optimization of hydrothermal synthesis of Bismuth titanate nanoparticles and application for photocatalytic degradation of tetracycline. J. Environ. Chem. Eng. 5: 5369–5380, https://doi.org/10.1016/j.jece.2017.10.006.Search in Google Scholar

Kumar, K.A., Lakshminarayana, B., Suryakala, D., and Subrahmanyam, C. (2020). Reduced graphene oxide supported ZnO quantum dots for visible light-induced simultaneous removal of tetracycline and hexavalent chromium. RSC Adv. 10: 20494–20503, https://doi.org/10.1039/d0ra02062a.Search in Google Scholar PubMed PubMed Central

Li, W., Li, T., Li, G., An, L., Li, F., and Zhang, Z. (2017). Electrospun H4SiW12O40/cellulose acetate composite nanofibrous membrane for photocatalytic degradation of tetracycline and methyl orange with different mechanism. Carbohydr. Polym. 168: 153–162, https://doi.org/10.1016/j.carbpol.2017.03.079.Search in Google Scholar PubMed

Li, X., Peng, K., Chen, H., and Wang, Z. (2018). TiO2 nanoparticles assembled on kaolinites with different morphologies for efficient photocatalytic performance. Sci. Rep. 8: 1–11, https://doi.org/10.1038/s41598-018-29563-8.Search in Google Scholar PubMed PubMed Central

Li, C., Hu, R., Lu, X., Bashir, S., and Liu, J.L. (2020). Efficiency enhancement of photocatalytic degradation of tetracycline using reduced graphene oxide coordinated titania nanoplatelet. Catal. Today 350: 171–183, https://doi.org/10.1016/j.cattod.2019.06.038.Search in Google Scholar

Li, Z., Li, H., Zeng, X., Liu, S., and Yang, Y. (2023). Adsorption and photodegradation of tetracycline by mannose-grafted chitosan composite films: performance, mechanism and availability. Chem. Eng. J. 458: 141455, https://doi.org/10.1016/j.cej.2023.141455.Search in Google Scholar

Liao, Q., Rong, H., Zhao, M., Luo, H., Chu, Z., and Wang, R. (2020). Interaction between tetracycline and microorganisms during wastewater treatment: a review. Sci. Total Environ. 757: 143981, https://doi.org/10.1016/j.scitotenv.2020.143981.Search in Google Scholar PubMed

Liu, M., Hou, L.-A., Yu, S., Xi, B., Zhao, Y., and Xia, X. (2013). MCM-41 impregnated with a zeolite precursor: synthesis, characterization and tetracycline antibiotics removal from aqueous solution. Chem. Eng. J. 223: 678–687, https://doi.org/10.1016/j.cej.2013.02.088.Search in Google Scholar PubMed PubMed Central

Liu, M., Hou, L.-A., Xi, B.-D., Li, Q., Hu, X., and Yu, S. (2016). Magnetically separable Ag/AgCl-zero valent iron particles modified zeolite X heterogeneous photocatalysts for tetracycline degradation under visible light. Chem. Eng. J. 302: 475–484, https://doi.org/10.1016/j.cej.2016.05.083.Search in Google Scholar

Liu, X., Huang, D., Lai, C., Zeng, G., Qin, L., Zhang, C., Yi, H., Li, B., Deng, R., Liu, S., et al.. (2018). Recent advances in sensors for tetracycline antibiotics and their applications. Trends Anal. Chem. 109: 260–274, https://doi.org/10.1016/j.trac.2018.10.011.Search in Google Scholar

Liu, J., Lin, H., He, Y., Dong, Y., and Menzembere, E.R.G.Y. (2020a). Novel CoS2/MoS2@ zeolite with excellent adsorption and photocatalytic performance for tetracycline removal in simulated wastewater. J. Clean. Prod. 260: 121047, https://doi.org/10.1016/j.jclepro.2020.121047.Search in Google Scholar

Liu, Y., Yang, J., Wu, B., Zhang, W., Zhang, X., Shan, C., and Liu, Q. (2020b). CeO2/Co3O4 hollow microsphere: pollen-biotemplated preparation and application in photo-catalytic degradation. Colloids Surf. A Physicochem. Eng. 586: 124193, https://doi.org/10.1016/j.colsurfa.2019.124193.Search in Google Scholar

Liu, T., Li, Y., Sun, H., Zhang, M., Xia, Z., and Yang, Q. (2022). Asymmetric structure awakened n-π* electron transition in sulfur and selenium co-doped g-C3N4 with efficient photocatalytic performance. Chin. J. Chem. Struct. 41: 2206055–2206061.Search in Google Scholar

Luo, B., Xu, D., Li, D., Wu, G., Wu, M., Shi, W., and Chen, M. (2015). Fabrication of a Ag/Bi3TaO7 plasmonic photocatalyst with enhanced photocatalytic activity for degradation of tetracycline. ACS Appl. Mater. Interfaces 7: 17061–17069, https://doi.org/10.1021/acsami.5b03535.Search in Google Scholar PubMed

Luo, L., Liang, R., Zhong, J., and Li, J. (2021a). Polyethylene glycol assisted preparation of AgI with enhanced photocatalytic activity. Solid State Sci. 116: 106610, https://doi.org/10.1016/j.solidstatesciences.2021.106610.Search in Google Scholar

Luo, X., Hu, S., Yuan, J., Yang, H., Shan, S., Hu, T., Zhi, Y., Su, H., and Jiang, L. (2021b). A bio-based metal–organic aerogel (MOA) adsorbent for capturing tetracycline from aqueous solution. Environ. Sci. Nano 8: 2478–2491, https://doi.org/10.1039/d1en00353d.Search in Google Scholar

Lv, S.-W., Liu, J.-M., Zhao, N., Li, C.-Y., Yang, F.-E., Wang, Z.-H., and Wang, S. (2020). MOF-derived CoFe2O4/Fe2O3 embedded in g-C3N4 as high-efficient Z-scheme photocatalysts for enhanced degradation of emerging organic pollutants in the presence of persulfate. Sep. Purif. Technol. 253: 117413, https://doi.org/10.1016/j.seppur.2020.117413.Search in Google Scholar

Ma, Y., Xiong, H., Zhao, Z., Yu, Y., Zhou, D., and Dong, S. (2018). Model-based evaluation of tetracycline hydrochloride removal and mineralization in an intimately coupled photocatalysis and biodegradation reactor. Chem. Eng. J. 351: 967–975, https://doi.org/10.1016/j.cej.2018.06.167.Search in Google Scholar

Martins, A.C., Cazetta, A.L., Pezoti, O., Souza, J.R., Zhang, T., Pilau, E.J., Asefa, T., and Almeida, V.C. (2017). Sol-gel synthesis of new TiO2/activated carbon photocatalyst and its application for degradation of tetracycline. Ceram. Int. 43: 4411–4418, https://doi.org/10.1016/j.ceramint.2016.12.088.Search in Google Scholar

Minale, M., Gu, Z., Guadie, A., Kabtamu, D.M., Li, Y., and Wang, X. (2020). Application of graphene-based materials for removal of tetracyclines using adsorption and photocatalytic-degradation: a review. J. Environ. Manage. 276: 111310, https://doi.org/10.1016/j.jenvman.2020.111310.Search in Google Scholar PubMed

Mirian, Z.-A. and Nezamzadeh-Ejhieh, A.J. (2016). Removal of phenol content of an industrial wastewater via a heterogeneous photodegradation process using supported FeO onto nanoparticles of Iranian clinoptilolite. Desalination 57: 16483–16494, https://doi.org/10.1080/19443994.2015.1087881.Search in Google Scholar

Mirsalari, S.A., Nezamzadeh-Ejhieh, A., and Massah, A.R. (2022). A designed experiment for CdS-AgBr photocatalyst toward methylene blue. Environ. Sci. Pollut. Res. 29: 1–20, https://doi.org/10.1007/s11356-021-17569-1.Search in Google Scholar PubMed

Mousavi-Salehi, S., Keshipour, S., and Ahour, F. (2023). Gold supported on graphene oxide/silica photocatalyst for hydrogen generation from formic acid. J. Phys. Chem. Solid. 176: 111239, https://doi.org/10.1016/j.jpcs.2023.111239.Search in Google Scholar

Nasseh, N., Taghavi, L., Barikbin, B., and Nasseri, M.A. (2018). Synthesis and characterizations of a novel FeNi3/SiO2/CuS magnetic nanocomposite for photocatalytic degradation of tetracycline in simulated wastewater. J. Clean. Prod. 179: 42–54, https://doi.org/10.1016/j.jclepro.2018.01.052.Search in Google Scholar

Nasseh, N., Barikbin, B., and Taghavi, L. (2020a). Photocatalytic degradation of tetracycline hydrochloride by FeNi3/SiO2/CuS magnetic nanocomposite under simulated solar irradiation: efficiency, stability, kinetic and pathway study. Environ. Technol. Innovat. 20: 101035, https://doi.org/10.1016/j.eti.2020.101035.Search in Google Scholar

Nasseh, N., Panahi, A.H., Esmati, M., Daglioglu, N., Asadi, A., Rajati, H., and Khodadoost, F. (2020b). Enhanced photocatalytic degradation of tetracycline from aqueous solution by a novel magnetically separable FeNi3/SiO2/ZnO nano-composite under simulated sunlight: efficiency, stability, and kinetic studies. J. Mol. Liq. 301: 112434, https://doi.org/10.1016/j.molliq.2019.112434.Search in Google Scholar

Nezamzadeh-Ejhieh, A. and Esmaeilian, A. (2012). Application of surfactant modified zeolite carbon paste electrode (SMZ-CPE) towards potentiometric determination of sulfate. Microporous Mesoporous Mater. 147: 302–309.10.1016/j.micromeso.2011.06.026Search in Google Scholar

Nezamzadeh-Ejhieh, A. and Hushmandrad, S. (2010). Solar photodecolorization of methylene blue by CuO/X zeolite as a heterogeneous catalyst. Appl. Catal. A 388: 149–159, https://doi.org/10.1016/j.apcata.2010.08.042.Search in Google Scholar

Nezamzadeh-Ejhieh, A. and Karimi-Shamsabadi, M. (2013). Decolorization of a binary azo dyes mixture using CuO incorporated nanozeolite-X as a heterogeneous catalyst and solar irradiation. Chem. Eng. J. 228: 631–641, https://doi.org/10.1016/j.cej.2013.05.035.Search in Google Scholar

Nezamzadeh-Ejhieh, A. and Karimi-Shamsabadi, M. (2014). Comparison of photocatalytic efficiency of supported CuO onto micro and nano particles of zeolite X in photodecolorization of methylene blue and methyl orange aqueous mixture. Appl. Catal. A 477: 83–92, https://doi.org/10.1016/j.apcata.2014.02.031.Search in Google Scholar

Nezamzadeh-Ejhieh, A. and Nematollahi, Z. (2011). Surfactant modified zeolite carbon paste electrode (SMZ-CPE) as a nitrate selective electrode. Electrochim. Acta 56: 8334–8341, https://doi.org/10.1016/j.electacta.2011.07.013.Search in Google Scholar

Nezamzadeh-Ejhieh, A. and Shirzadi, A. (2014). Enhancement of the photocatalytic activity of ferrous oxide by doping onto the nano-clinoptilolite particles towards photodegradation of tetracycline. Chemosphere 107: 136–144, https://doi.org/10.1016/j.chemosphere.2014.02.015.Search in Google Scholar PubMed

Norouzi, A. and Nezamzadeh-Ejhieh, A. (2020). α-Fe2O3/Cu2O heterostructure: brief characterization and kinetic aspect of degradation of methylene blue. Phys. B Condens. 599: 412422, https://doi.org/10.1016/j.physb.2020.412422.Search in Google Scholar

Nosuhi, M. and Nezamzadeh-Ejhieh, A. (2017). High catalytic activity of Fe (II)-clinoptilolite nanoparticales for indirect voltammetric determination of dichromate: experimental design by response surface methodology (RSM). Electrochim. Acta 223: 47–62, https://doi.org/10.1016/j.electacta.2016.12.011.Search in Google Scholar

Omrani, N. and Nezamzadeh-Ejhieh, A. (2020a). A comprehensive study on the enhanced photocatalytic activity of Cu2O/BiVO4/WO3 nanoparticles. J. Photochem. Photobiol. A 389: 112223, https://doi.org/10.1016/j.jphotochem.2019.112223.Search in Google Scholar

Omrani, N. and Nezamzadeh-Ejhieh, A. (2020b). A novel quadripartite Cu2O-CdS-BiVO4-WO3 visible-light driven photocatalyst: brief characterization and study the kinetic of the photodegradation and mineralization of sulfasalazine. J. Photochem. Photobiol. A 400: 112726, https://doi.org/10.1016/j.jphotochem.2020.112726.Search in Google Scholar

Omrani, N. and Nezamzadeh-Ejhieh, A. (2020c). Focus on scavengers’ effects and GC-MASS analysis of photodegradation intermediates of sulfasalazine by Cu2O/CdS nanocomposite. Sep. Purif. Technol. 235: 116228, https://doi.org/10.1016/j.seppur.2019.116228.Search in Google Scholar

Omrani, N. and Nezamzadeh-Ejhieh, A. (2020d). Photodegradation of sulfasalazine over Cu2O-BiVO4-WO3 nano-composite: characterization and experimental design. Int. J. Hydrogen Energy 45: 19144–19162, https://doi.org/10.1016/j.ijhydene.2020.05.019.Search in Google Scholar

Oseghe, E.O. and Ofomaja, A.E. (2018). Facile microwave synthesis of pine cone derived C-doped TiO2 for the photodegradation of tetracycline hydrochloride under visible-LED light. J. Environ. Manage. 223: 860–867, https://doi.org/10.1016/j.jenvman.2018.07.003.Search in Google Scholar PubMed

Ou, M., Zhang, Z., Wen, Y., Xu, X., and Yang, H. (2021). A sensitive material for specifically treating tetracycline in water environment. Chin. J. Struct. Chem. 40: 646–652.Search in Google Scholar

Pan, Y., Yuan, X., Jiang, L., Wang, H., Yu, H., and Zhang, J. (2020). Stable self-assembly AgI/UiO-66 (NH2) heterojunction as efficient visible-light responsive photocatalyst for tetracycline degradation and mechanism insight. Chem. Eng. J. 384: 123310, https://doi.org/10.1016/j.cej.2019.123310.Search in Google Scholar

Peiris, C., Gunatilake, S.R., Mlsna, T.E., Mohan, D., and Vithanage, M. (2017). Biochar based removal of antibiotic sulfonamides and tetracyclines in aquatic environments: a critical review. Bioresour. Technol. 246: 150–159, https://doi.org/10.1016/j.biortech.2017.07.150.Search in Google Scholar PubMed

Pi, Y., Jin, S., Li, X., Tu, S., Li, Z., and Xiao, J. (2019). Encapsulated MWCNT@ MOF-derived In2S3 tubular heterostructures for boosted visible-light-driven degradation of tetracycline. Appl. Catal. B 256: 117882, https://doi.org/10.1016/j.apcatb.2019.117882.Search in Google Scholar

Pourshirband, N. and Nezamzadeh-Ejhieh, A. (2021). An efficient Z-scheme CdS/g-C3N4 nano catalyst in methyl orange photodegradation: focus on the scavenging agent and mechanism. J. Mol. Liq. 335: 116543, https://doi.org/10.1016/j.molliq.2021.116543.Search in Google Scholar

Pourshirband, N. and Nezamzadeh-Ejhieh, A. (2022). The boosted activity of AgI/BiOI nanocatalyst: a RSM study towards Eriochrome Black T photodegradation. Environ. Sci. Pollut. Res. 29: 45276–45291, https://doi.org/10.1007/s11356-022-19040-1.Search in Google Scholar PubMed

Pourshirband, N., Nezamzadeh-Ejhieh, A., and Mirsattari, S.N. (2020). The coupled AgI/BiOI catalyst: synthesis, brief characterization, and study of the kinetic of the EBT photodegradation. Chem. Phys. Lett. 761: 138090, https://doi.org/10.1016/j.cplett.2020.138090.Search in Google Scholar

Pourshirband, N., Nezamzadeh-Ejhieh, A., and Mirsattari, S.N. (2021). The CdS/g-C3N4 nano-photocatalyst: brief characterization and kinetic study of photodegradation and mineralization of methyl orange. Spectrochim. Acta - A: Mol. Biomol. Spectrosc. 248: 119110, https://doi.org/10.1016/j.saa.2020.119110.Search in Google Scholar PubMed

Pourtaheri, A. and Nezamzadeh-Ejhieh, A. (2015). Photocatalytic properties of incorporated NiO onto clinoptilolite nano-particles in the photodegradation process of aqueous solution of cefixime pharmaceutical capsule. Chem. Eng. Res. Des. 104: 835–843, https://doi.org/10.1016/j.cherd.2015.10.031.Search in Google Scholar

Qiao, D., Li, Z., Duan, J., and He, X. (2020a). Adsorption and photocatalytic degradation mechanism of magnetic graphene oxide/ZnO nanocomposites for tetracycline contaminants. Chem. Eng. J. 400: 125952, https://doi.org/10.1016/j.cej.2020.125952.Search in Google Scholar

Qiao, X., Wang, C., and Niu, Y. (2020b). N-Benzyl HMTA induced self-assembly of organic-inorganic hybrid materials for efficient photocatalytic degradation of tetracycline. J. Hazard. Mater. 391: 122121, https://doi.org/10.1016/j.jhazmat.2020.122121.Search in Google Scholar PubMed

Qin, Y., Jiang, Z., Guo, Y., Mushtaq, M.A., Shen, Z., Du, W., Ni, C., Luo, G., Ji, Y., Zhang, Z., et al.. (2023). Benzotriazole-based structure in porous organic polymer enhancing O2 activation for high-efficient degradation of tetracycline under visible light. Chem. Eng. J. 460: 141810, https://doi.org/10.1016/j.cej.2023.141810.Search in Google Scholar

Rahmani-Aliabadi, A. and Nezamzadeh-Ejhieh, A. (2018). A visible light FeS/Fe2S3/zeolite photocatalyst towards photodegradation of ciprofloxacin. J. Photochem. Photobiol. A 357: 1–10, https://doi.org/10.1016/j.jphotochem.2018.02.006.Search in Google Scholar

Raeisi-Kheirabadi, N. and Nezamzadeh-Ejhieh, A. (2020). A Z-scheme g-C3N4/Ag3PO4 nanocomposite: its photocatalytic activity and capability for water splitting. Int. J. Hydrogen Energy 45: 33381–33395, https://doi.org/10.1016/j.ijhydene.2020.09.028.Search in Google Scholar

Rasheed, H.U., Lv, X., Zhang, S., Wei, W., and Xie, J. (2018). Ternary MIL-100 (Fe)@ Fe3O4/CA magnetic nanophotocatalysts (MNPCs): magnetically separable and Fenton-like degradation of tetracycline hydrochloride. Adv. Powder Technol. 29: 3305–3314, https://doi.org/10.1016/j.apt.2018.09.011.Search in Google Scholar

Rashid, M., Parsaei, S., Ghoorchian, A., Dashtian, K., and Mowla, D. (2023). A spiral shape microfluidic photoreactor with MOF (NiFe)-derived NiSe-Fe3O4/C heterostructure for photodegradation of tetracycline: mechanism conception and DFT calculation. J. Ind. Eng. Chem. 121: 275–286, https://doi.org/10.1016/j.jiec.2023.01.031.Search in Google Scholar

Ravikumar, K., Sudakaran, S.V., Ravichandran, K., Pulimi, M., Natarajan, C., and Mukherjee, A. (2019). Green synthesis of NiFe nano particles using Punica granatum peel extract for tetracycline removal. J. Clean. Prod. 210: 767–776, https://doi.org/10.1016/j.jclepro.2018.11.108.Search in Google Scholar

Ren, Z., Chen, F., Wen, K., and Lu, J. (2020). Enhanced photocatalytic activity for tetracyclines degradation with Ag modified g-C3N4 composite under visible light. J. Photochem. Photobiol. A 389: 112217, https://doi.org/10.1016/j.jphotochem.2019.112217.Search in Google Scholar

Sabatini, V., Rimoldi, L., Tripaldi, L., Meroni, D., Farina, H., Ortenzi, M.A., and Ardizzone, S. (2018). TiO2-SiO2-PMMA terpolymer floating device for the photocatalytic remediation of water and gas phase pollutants. Catalysts 8: 568, https://doi.org/10.3390/catal8110568.Search in Google Scholar

Saghi, M. and Mahanpoor, K. (2017). Photocatalytic degradation of tetracycline aqueous solutions by nanospherical α-Fe2O3 supported on 12-tungstosilicic acid as catalyst: using full factorial experimental design. Int. J. Ind. Chem. 8: 297–313, https://doi.org/10.1007/s40090-016-0108-6.Search in Google Scholar

Salesi, S. and Nezamzadeh-Ejhieh, A. (2022). Boosted photocatalytic effect of binary AgI/Ag2WO4 nanocatalyst: characterization and kinetics study towards ceftriaxone photodegradation. Environ. Sci. Pollut. Res. 29: 90191–90206, https://doi.org/10.1007/s11356-022-22100-1.Search in Google Scholar PubMed

Semeraro, P., Bettini, S., Sawalha, S., Pal, S., Licciulli, A., Marzo, F., Lovergine, N., Valli, L., and Giancane, G. (2020). Photocatalytic degradation of tetracycline by ZnO/γ-Fe2O3 paramagnetic nanocomposite material. Nanomaterials 10: 1458, https://doi.org/10.3390/nano10081458.Search in Google Scholar PubMed PubMed Central

Serra, A., Gómez, E., Michler, J., and Philippe, L. (2021). Facile cost-effective fabrication of Cu@ Cu2O@ CuO–microalgae photocatalyst with enhanced visible light degradation of tetracycline. Chem. Eng. J. 413: 127477, https://doi.org/10.1016/j.cej.2020.127477.Search in Google Scholar

Shang, Q., Liu, N., You, D., Cheng, Q., Liao, G., and Pan, Z. (2021). The application of Ni and Cu-MOFs as highly efficient catalysts for visible light-driven tetracycline degradation and hydrogen production. J. Mater. Chem. C 9: 238–248, https://doi.org/10.1039/d0tc04733c.Search in Google Scholar

Sharafzadeh, S. and Nezamzadeh-Ejhieh, A. (2015). Using of anionic adsorption property of a surfactant modified clinoptilolite nano-particles in modification of carbon paste electrode as effective ingredient for determination of anionic ascorbic acid species in presence of cationic dopamine species. Electrochim. Acta 184: 371–380, https://doi.org/10.1016/j.electacta.2015.09.164.Search in Google Scholar

Sharifian, S. and Nezamzadeh-Ejhieh, A. (2016). Modification of carbon paste electrode with Fe (III)-clinoptilolite nano-particles for simultaneous voltammetric determination of acetaminophen and ascorbic acid. Mater. Sci. Eng. C 58: 510–520, https://doi.org/10.1016/j.msec.2015.08.071.Search in Google Scholar PubMed

Shen, H., Wang, J., Jiang, J., Luo, B., Mao, B., and Shi, W. (2017). All-solid-state Z-scheme system of RGO-Cu2O/Bi2O3 for tetracycline degradation under visible-light irradiation. Chem. Eng. J. 313: 508–517, https://doi.org/10.1016/j.cej.2016.11.161.Search in Google Scholar

Shen, R., Hao, L., Ng, Y.H., Zhang, P., Arramel, A., Li, Y., and Li, X. (2022). Heterogeneous N-coordinated single-atom photocatalysts and electrocatalysts. Chin. J. Catal. 43: 2453–2483, https://doi.org/10.1016/s1872-2067(22)64104-4.Search in Google Scholar

Soltani, T., Tayyebi, A., and Lee, B.-K. (2019). Photolysis and photocatalysis of tetracycline by sonochemically heterojunctioned BiVO4/reduced graphene oxide under visible-light irradiation. J. Environ. Manage. 232: 713–721, https://doi.org/10.1016/j.jenvman.2018.11.133.Search in Google Scholar PubMed

Soori, F. and Nezamzadeh-Ejhieh, A. (2018). Synergistic effects of copper oxide-zeolite nanoparticles composite on photocatalytic degradation of 2, 6-dimethylphenol aqueous solution. J. Mol. Liq. 255: 250–256, https://doi.org/10.1016/j.molliq.2018.01.169.Search in Google Scholar

Sun, S., Yang, J., Liu, Y., Xie, Y., and Mwabulili, F. (2023). Porous Graphitic phase carbon nitride/graphene oxide hydrogel microspheres for efficient and recyclable degradation of aflatoxin B1 in peanut oil. Food Chem. 417: 135964, https://doi.org/10.1016/j.foodchem.2023.135964.Search in Google Scholar PubMed

Tabrizian, P., Ma, W., Bakr, A., and Rahaman, M.S. (2019). pH-sensitive and magnetically separable Fe/Cu bimetallic nanoparticles supported by graphene oxide (GO) for high-efficiency removal of tetracyclines. J. Colloid Interface Sci. 534: 549–562, https://doi.org/10.1016/j.jcis.2018.09.034.Search in Google Scholar PubMed

Tamiji, T. and Nezamzadeh-Ejhieh, A. (2018). A comprehensive study on the kinetic aspects and experimental design for the voltammetric response of a Sn (IV)-clinoptilolite carbon paste electrode towards Hg (II). J. Electroanal. Chem. 829: 95–105, https://doi.org/10.1016/j.jelechem.2018.10.011.Search in Google Scholar

Tamiji, T. and Nezamzadeh-Ejhieh, A. (2019a). Study of kinetics aspects of the electrocatalytic oxidation of benzyl alcohol in aqueous solution on AgBr modified carbon paste electrode. Mater. Chem. Phys. 237: 121813, https://doi.org/10.1016/j.matchemphys.2019.121813.Search in Google Scholar

Tamiji, T. and Nezamzadeh-Ejhieh, A. (2019b). Sensitive voltammetric determination of bromate by using ion-exchange property of a Sn (II)-clinoptilolite-modified carbon paste electrode. J. Solid State Electrochem. 23: 143–157, https://doi.org/10.1007/s10008-018-4119-4.Search in Google Scholar

Tang, X., Wang, Z., and Wang, Y. (2018). Visible active N-doped TiO2/reduced graphene oxide for the degradation of tetracycline hydrochloride. Chem. Phys. Lett. 691: 408–414, https://doi.org/10.1016/j.cplett.2017.11.037.Search in Google Scholar

Tang, S., Zhao, M., Yuan, D., Li, X., Wang, Z., Zhang, X., Jiao, T., and Ke, J. (2021). Fe3O4 nanoparticles three-dimensional electro-peroxydisulfate for improving tetracycline degradation. Chemosphere 268: 129315, https://doi.org/10.1016/j.chemosphere.2020.129315.Search in Google Scholar PubMed

Tiwari, A., Shukla, A., Tiwari, D., and Lee, S.-M. (2019). Au-nanoparticle/nanopillars TiO2 meso-porous thin films in the degradation of tetracycline using UV-A light. J. Ind. Eng. Chem. 69: 141–152, https://doi.org/10.1016/j.jiec.2018.09.027.Search in Google Scholar

Ul-Islam, M., Alhajaim, W., Fatima, A., Yasir, S., Kamal, T., Abbas, Y., Khan, S., Khan, A.H., Manan, S., Ullah, M.W., et al.. (2023). Development of low-cost bacterial cellulose-pomegranate peel extract-based antibacterial composite for potential biomedical applications. Int. J. Biol. Macromol. 231: 123269, https://doi.org/10.1016/j.ijbiomac.2023.123269.Search in Google Scholar PubMed

Vahabirad, S. and Nezamzadeh-Ejhieh, A. (2022). Co-precipitation synthesis of BiOI/(BiO)2CO3: brief characterization and the kinetic study in the photodegradation and mineralization of sulfasalazine. J. Solid State Chem. 310: 123018, https://doi.org/10.1016/j.jssc.2022.123018.Search in Google Scholar

Vahabirad, S., Nezamzadeh-Ejhieh, A., and Mirmohammadi, M. (2022). The coupled BiOI/(BiO)2 CO3 catalyst: brief characterization, and study of its photocatalytic kinetics. J. Solid State Chem. 314: 123405, https://doi.org/10.1016/j.jssc.2022.123405.Search in Google Scholar

Vinesh, V., Shaheer, A., and Neppolian, B. (2019). Reduced graphene oxide (rGO) supported electron deficient B-doped TiO2 (Au/B-TiO2/rGO) nanocomposite: an efficient visible light sonophotocatalyst for the degradation of Tetracycline (TC). Ultrason. Sonochem. 50: 302–310, https://doi.org/10.1016/j.ultsonch.2018.09.030.Search in Google Scholar PubMed

Wang, H., Yuan, X., Wu, Y., Zeng, G., Dong, H., Chen, X., Leng, L., Wu, Z., and Peng, L. (2016). In situ synthesis of In2S3@ MIL-125 (Ti) core–shell microparticle for the removal of tetracycline from wastewater by integrated adsorption and visible-light-driven photocatalysis. Appl. Catal. B 186: 19–29, https://doi.org/10.1016/j.apcatb.2015.12.041.Search in Google Scholar

Wang, C., Wu, Y., Lu, J., Zhao, J., Cui, J., Wu, X., Yan, Y., and Huo, P. (2017a). Bioinspired synthesis of photocatalytic nanocomposite membranes based on synergy of Au-TiO2 and polydopamine for degradation of tetracycline under visible light. ACS Appl. Mater. Interfaces 9: 23687–23697, https://doi.org/10.1021/acsami.7b04902.Search in Google Scholar PubMed

Wang, W., Xiao, K., Zhu, L., Yin, Y., and Wang, Z. (2017b). Graphene oxide supported titanium dioxide & ferroferric oxide hybrid, a magnetically separable photocatalyst with enhanced photocatalytic activity for tetracycline hydrochloride degradation. RSC Adv. 7: 21287–21297, https://doi.org/10.1039/c6ra28224e.Search in Google Scholar

Wang, X., Jia, J., and Wang, Y. (2017c). Combination of photocatalysis with hydrodynamic cavitation for degradation of tetracycline. Chem. Eng. J. 315: 274–282, https://doi.org/10.1016/j.cej.2017.01.011.Search in Google Scholar

Wang, D., Jia, F., Wang, H., Chen, F., Fang, Y., Dong, W., Zeng, G., Li, X., Yang, Q., and Yuan, X. (2018a). Simultaneously efficient adsorption and photocatalytic degradation of tetracycline by Fe-based MOFs. J. Colloid Interface Sci. 519: 273–284, https://doi.org/10.1016/j.jcis.2018.02.067.Search in Google Scholar PubMed

Wang, L., Zhang, C., Cheng, R., Ali, J., Wang, Z., Mailhot, G., and Pan, G. (2018b). Microcystis aeruginosa synergistically facilitate the photocatalytic degradation of tetracycline hydrochloride and Cr (VI) on PAN/TiO2/Ag nanofiber mats. Catalysts 8: 628, https://doi.org/10.3390/catal8120628.Search in Google Scholar

Wang, H., Zhang, M., He, X., Du, T., Wang, Y., Li, Y., and Hao, T. (2019a). Facile prepared ball-like TiO2 at GO composites for oxytetracycline removal under solar and visible lights. Water Res. 160: 197–205, https://doi.org/10.1016/j.watres.2019.05.073.Search in Google Scholar PubMed

Wang, W., Fang, J., Chen, H., Bao, N., and Lu, C. (2019b). Rice-husk-derived mesoporous 0D/2D C3N4 isotype heterojunction with improved quantum effect for photodegradation of tetracycline antibiotics. Ceram. Int. 45: 2234–2240, https://doi.org/10.1016/j.ceramint.2018.10.136.Search in Google Scholar

Wang, B., Liu, X., Dai, S., and Lu, H. (2020). α− Fe2O3 nanoparticles/porous g− C3N4 hybrids synthesized by calcinations of Fe-based MOF/melamine mixtures for boosting visible-light photocatalytic tetracycline degradation. ChemistrySelect 5: 3303–3311, https://doi.org/10.1002/slct.201904388.Search in Google Scholar

Wang, T., Liu, X., Ma, C., Wei, M., Huo, P., and Yan, Y. (2021). In situ construction of BiVO4(-) cellulose fibers@ CDs (-) polyvinyl alcohol composites for tetracycline photocatalytic degradation. Sci. China Technol. Sci. 64: 548–558, https://doi.org/10.1007/s11431-020-1611-y.Search in Google Scholar

Wang, H., Li, X., Zhao, X., Li, C., Song, X., Zhang, P., and Huo, P. (2022). A review on heterogeneous photocatalysis for environmental remediation: from semiconductors to modification strategies. Chin. J. Catal. 43: 178–214, https://doi.org/10.1016/s1872-2067(21)63910-4.Search in Google Scholar

Wang, C., Yan, R., Cai, M., Liu, Y., and Li, S. (2023). A novel organic/inorganic S-scheme heterostructure of TCPP/Bi12O17Cl2 for boosting photodegradation of tetracycline hydrochloride: kinetic, degradation mechanism, and toxic assessment. Appl. Surf. Sci. 610: 155346, https://doi.org/10.1016/j.apsusc.2022.155346.Search in Google Scholar

Watkinson, A., Murby, E., and Costanzo, S. (2007). Removal of antibiotics in conventional and advanced wastewater treatment: implications for environmental discharge and wastewater recycling. Water Res. 41: 4164–4176, https://doi.org/10.1016/j.watres.2007.04.005.Search in Google Scholar PubMed

Wei, R., Wang, H., Jiang, L., Yang, J., Li, W., Yuan, X., Wang, H., Liang, J., Chen, Y., and Bu, Y. (2023). Molecular self-assembled synthesis of highly dispersed Co single-atom coordinated 2-methylimidazole modified carbon nitride for peroxymonosulfate activation. Chem. Eng. J. 471: 144494, https://doi.org/10.1016/j.cej.2023.144494.Search in Google Scholar

Wetchakun, K., Wetchakun, N., and Sakulsermsuk, S. (2019). An overview of solar/visible light-driven heterogeneous photocatalysis for water purification: TiO2-and ZnO-based photocatalysts used in suspension photoreactors. J. Ind. Eng. Chem. 71: 19–49, https://doi.org/10.1016/j.jiec.2018.11.025.Search in Google Scholar

Wu, S., Hu, H., Lin, Y., Zhang, J., and Hu, Y.H. (2020a). Visible light photocatalytic degradation of tetracycline over TiO2. Chem. Eng. J. 382: 122842, https://doi.org/10.1016/j.cej.2019.122842.Search in Google Scholar

Wu, Y., Li, X., Yang, Q., Wang, D., Yao, F., Cao, J., Chen, Z., Huang, X., Yang, Y., and Li, X. (2020b). Mxene-modulated dual-heterojunction generation on a metal-organic framework (MOF) via surface constitution reconstruction for enhanced photocatalytic activity. Chem. Eng. J. 390: 124519, https://doi.org/10.1016/j.cej.2020.124519.Search in Google Scholar

Xiang, H., Wang, Z., and Chen, J. (2022). Revealing the role of elementary doping in photocatalytic phenol mineralization. Chin. J. Chem. Struct. 41: 2209069–2209073.Search in Google Scholar

Xiao, H., Zhang, W., Wei, Y., Yu, L., and Chen, L. (2018). Fabrication of Fe/ZnO composite nanosheets by nanofibrillated cellulose as soft template and photocatalytic degradation for tetracycline. J. Inorg. Organomet. Polym. Mater. 28: 1299–1304, https://doi.org/10.1007/s10904-017-0712-8.Search in Google Scholar

Xiao, Y., Tao, Y., Jiang, Y., Wang, J., Zhang, W., Liu, Y., Zhang, J., Wu, X., and Liu, Z. (2023). Construction of core–shell CeO2 nanorods/SnIn4S8 nanosheets heterojunction with rapid spatial electronic migration for effective wastewater purification and H2O2 production. Sep. Purif. Technol. 304: 122385, https://doi.org/10.1016/j.seppur.2022.122385.Search in Google Scholar

Xing-Zhe, G., Jia-Le, L., Shan-Shan, S., Hui, Z., Shuai-Shuai, H., and Shui-Sheng, C. (2018). Synthesis, structure and luminescent property of a Zn (II) complex with mixed multi-N donor and 2, 5-Dihydroxy-terephthalic acid ligands. Chin. J. Chem. Struct. 37: 1117–1124.Search in Google Scholar

Xiong, H., Zou, D., Zhou, D., Dong, S., Wang, J., and Rittmann, B.E. (2017). Enhancing degradation and mineralization of tetracycline using intimately coupled photocatalysis and biodegradation (ICPB). Chem. Eng. J. 316: 7–14, https://doi.org/10.1016/j.cej.2017.01.083.Search in Google Scholar

Xiong, H., Dong, S., Zhang, J., Zhou, D., and Rittmann, B.E. (2018). Roles of an easily biodegradable co-substrate in enhancing tetracycline treatment in an intimately coupled photocatalytic-biological reactor. Water Res. 136: 75–83, https://doi.org/10.1016/j.watres.2018.02.061.Search in Google Scholar PubMed

Xu, J., Zhang, B., Jia, L., Bi, N., and Zhao, T. (2020). Metal-enhanced fluorescence detection and degradation of tetracycline by silver nanoparticle-encapsulated halloysite nano-lumen. J. Hazard. Mater. 386: 121630, https://doi.org/10.1016/j.jhazmat.2019.121630.Search in Google Scholar PubMed

Yamashita, H., Mori, K., Kuwahara, Y., Kamegawa, T., Wen, M., Verma, P., and Che, M. (2018). Single-site and nano-confined photocatalysts designed in porous materials for environmental uses and solar fuels. Chem. Soc. Rev. 47: 8072–8096, https://doi.org/10.1039/c8cs00341f.Search in Google Scholar PubMed

Yang, R., Zhong, S., Zhang, L., and Liu, B. (2020). PW12/CN@ Bi2WO6 composite photocatalyst prepared based on organic-inorganic hybrid system for removing pollutants in water. Sep. Purif. Technol. 235: 116270, https://doi.org/10.1016/j.seppur.2019.116270.Search in Google Scholar

Yang, H., Hu, S., Zhao, H., Luo, X., Liu, Y., Deng, C., Yu, Y., Hu, T., Shan, S., Zhi, Y., et al.. (2021). High-performance Fe-doped ZIF-8 adsorbent for capturing tetracycline from aqueous solution. J. Hazard. Mater. 416: 126046, https://doi.org/10.1016/j.jhazmat.2021.126046.Search in Google Scholar PubMed

Yousefi, A. and Nezamzadeh-Ejhieh, A. (2021). Preparation and characterization of SnO2-BiVO4-CuO catalyst and kinetics of phenazopyridine photodegradation. Iran. J. Catal. 11: 247–259.Search in Google Scholar

Yu, X., Lu, Z., Wu, D., Yu, P., He, M., Chen, T., Shi, W., Huo, P., Yan, Y., and Feng, Y. (2014). Heteropolyacid–chitosan/TiO2 composites for the degradation of tetracycline hydrochloride solution. React. Kinet. Mech. Catal. 111: 347–360, https://doi.org/10.1007/s11144-013-0631-9.Search in Google Scholar

Yu, X., He, J., Zhang, Y., Hu, J., Chen, F., Wang, Y., He, G., Liu, J., and He, Q. (2019). Effective photodegradation of tetracycline by narrow-energy band gap photocatalysts La2-xSrxNiMnO6 (x= 0, 0.05, 0.10, and 0.125). J. Alloys Compd. 806: 451–463, https://doi.org/10.1016/j.jallcom.2019.07.233.Search in Google Scholar

Yu, Y., Zhang, Y., Yang, W., Yang, Y., Deng, Q., He, X., Peng, C., Xu, Y., Hu, T., Jiang, L., et al.. (2023). Cu-loaded reduced graphene oxide with ultrahigh adsorption performance for tetracycline from aqueous solution. J. Taiwan Inst. Chem. Eng. 147: 104899, https://doi.org/10.1016/j.jtice.2023.104899.Search in Google Scholar

Yuan, X., Shen, D., Zhang, Q., Zou, H., Liu, Z., and Peng, F. (2019). Z-scheme Bi2WO6/CuBi2O4 heterojunction mediated by interfacial electric field for efficient visible-light photocatalytic degradation of tetracycline. Chem. Eng. J. 369: 292–301, https://doi.org/10.1016/j.cej.2019.03.082.Search in Google Scholar

Yuan, J., Pudukudy, M., Hu, T., Liu, Y., Luo, X., Zhi, Y., Su, H., Jiang, L., and Shan, S. (2021). CeOx-coupled MIL-125-derived C-TiO2 catalysts for the enhanced photocatalytic abatement of tetracycline under visible light irradiation. Appl. Surf. Sci. 557: 149829, https://doi.org/10.1016/j.apsusc.2021.149829.Search in Google Scholar

Zhang, Y., Chen, J., Tang, H., Xiao, Y., Qiu, S., Li, S., and Cao, S. (2018). Hierarchically-structured SiO2-Ag@ TiO2 hollow spheres with excellent photocatalytic activity and recyclability. J. Hazard. Mater. 354: 17–26, https://doi.org/10.1016/j.jhazmat.2018.04.047.Search in Google Scholar PubMed

Zhang, F., Li, Y.-H., Li, J.-Y., Tang, Z.-R., and Xu, Y.-J. (2019a). 3D graphene-based gel photocatalysts for environmental pollutants degradation. Environ. Pollut. 253: 365–376, https://doi.org/10.1016/j.envpol.2019.06.089.Search in Google Scholar PubMed

Zhang, Y., Zhou, J., Chen, X., Wang, L., and Cai, W. (2019b). Coupling of heterogeneous advanced oxidation processes and photocatalysis in efficient degradation of tetracycline hydrochloride by Fe-based MOFs: synergistic effect and degradation pathway. Chem. Eng. J. 369: 745–757, https://doi.org/10.1016/j.cej.2019.03.108.Search in Google Scholar

Zhang, B., Zhang, M., Zhang, L., Bingham, P.A., Li, W., and Kubuki, S. (2020a). PVP surfactant-modified flower-like BiOBr with tunable bandgap structure for efficient photocatalytic decontamination of pollutants. Appl. Surf. Sci. 530: 147233, https://doi.org/10.1016/j.apsusc.2020.147233.Search in Google Scholar

Zhang, H., Li, J., He, X., and Liu, B. (2020b). Preparation of a g-C3N4/UiO-66-NH2/CdS photocatalyst with enhanced visible light photocatalytic activity for tetracycline degradation. Nanomaterials 10: 1824, https://doi.org/10.3390/nano10091824.Search in Google Scholar PubMed PubMed Central

Zhang, S., Yi, J., Chen, J., Yin, Z., Tang, T., Wei, W., Cao, S., and Xu, H. (2020c). Spatially confined Fe2O3 in hierarchical SiO2@ TiO2 hollow sphere exhibiting superior photocatalytic efficiency for degrading antibiotics. Chem. Eng. J. 380: 122583, https://doi.org/10.1016/j.cej.2019.122583.Search in Google Scholar

Zhang, Y., Zhou, J., Chen, J., Feng, X., and Cai, W. (2020d). Rapid degradation of tetracycline hydrochloride by heterogeneous photocatalysis coupling persulfate oxidation with MIL-53 (Fe) under visible light irradiation. J. Hazard. Mater. 392: 122315, https://doi.org/10.1016/j.jhazmat.2020.122315.Search in Google Scholar PubMed

Zhang, H., Sun, R., Li, D.-C., and Dou, J.-M. (2022). A review on crystalline porous MOFs materials in photocatalytic transformations of organic compounds in recent three years. Chin. J. Chem. Struct. 41: 2211071–2211083.Search in Google Scholar

Zhang, H., Yu, Y., Li, Y., Lin, L., Zhang, C., Zhang, W., Wang, L., and Niu, L. (2023). A novel BC/g-C3N4 porous hydrogel carrier used in intimately coupled photocatalysis and biodegradation system for efficient removal of tetracycline hydrochloride in water. Chemosphere 317: 137888, https://doi.org/10.1016/j.chemosphere.2023.137888.Search in Google Scholar PubMed

Zhao, Y., Gu, X., Li, S., Han, R., and Wang, G. (2015). Insights into tetracycline adsorption onto kaolinite and montmorillonite: experiments and modeling. Environ. Sci. Pollut. Res. 22: 17031–17040, https://doi.org/10.1007/s11356-015-4839-2.Search in Google Scholar PubMed

Zhao, X., Li, J., Li, X., Huo, P., and Shi, W. (2021). Design of metal-organic frameworks (MOFs)-based photocatalyst for solar fuel production and photo-degradation of pollutants. Chin. J. Catal. 42: 872–903, https://doi.org/10.1016/s1872-2067(20)63715-9.Search in Google Scholar

Zhong, S., Lv, C., Zou, S., Zhang, F., and Zhang, S. (2018). Preparation of pumice-loaded CeO2/Bi2 WO6 photocatalysts and treatment of tetracycline wastewater with a continuous flow photocatalytic reactor. J. Mater. Sci. Mater. Electron. 29: 2447–2454, https://doi.org/10.1007/s10854-017-8164-z.Search in Google Scholar

Zhong, S., Li, C., Shen, M., Lv, C., and Zhang, S. (2019). Synthesis of modified bismuth tungstate and the photocatalytic properties on tetracycline degradation and pathways. J. Mater. Res. Technol. 8: 1849–1858, https://doi.org/10.1016/j.jmrt.2019.01.002.Search in Google Scholar

Zhou, C., Huang, D., Xu, P., Zeng, G., Huang, J., Shi, T., Lai, C., Zhang, C., Cheng, M., Lu, Y., et al.. (2019). Efficient visible light driven degradation of sulfamethazine and tetracycline by salicylic acid modified polymeric carbon nitride via charge transfer. Chem. Eng. J. 370: 1077–1086, https://doi.org/10.1016/j.cej.2019.03.279.Search in Google Scholar

Zhu, X., Guo, F., Pan, J., Sun, H., Gao, L., Deng, J., Zhu, X., and Shi, W. (2021). Fabrication of visible-light-response face-contact ZnSnO3@ gC3N4 core–shell heterojunction for highly efficient photocatalytic degradation of tetracycline contaminant and mechanism insight. J. Mater. Sci. 56: 4366–4379, https://doi.org/10.1007/s10853-020-05542-1.Search in Google Scholar

Zyoud, A., Jondi, W., AlDaqqah, N., Asaad, S., Qamhieh, N., Hajamohideen, A., Helal, M.H., Kwon, H., and Hilal, H.S. (2017). Self-sensitization of tetracycline degradation with simulated solar light catalyzed by ZnO@ montmorillonite. Solid State Sci. 74: 131–143, https://doi.org/10.1016/j.solidstatesciences.2017.09.009.Search in Google Scholar

Zyoud, A.H., Zubi, A., Zyoud, S.H., Hilal, M.H., Zyoud, S., Qamhieh, N., Hajamohideen, A., and Hilal, H.S. (2019). Kaolin-supported ZnO nanoparticle catalysts in self-sensitized tetracycline photodegradation: zero-point charge and pH effects. Appl. Clay Sci. 182: 105294, https://doi.org/10.1016/j.clay.2019.105294.Search in Google Scholar

Received: 2023-06-16
Accepted: 2024-02-17
Published Online: 2024-04-04

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 12.6.2024 from https://www.degruyter.com/document/doi/10.1515/revce-2023-0029/html
Scroll to top button