skip to main content
survey

A Systematic Survey of Deep Learning-Based Single-Image Super-Resolution

Published:14 May 2024Publication History
Skip Abstract Section

Abstract

Single-image super-resolution (SISR) is an important task in image processing, which aims to enhance the resolution of imaging systems. Recently, SISR has made a huge leap and has achieved promising results with the help of deep learning (DL). In this survey, we give an overview of DL-based SISR methods and group them according to their design targets. Specifically, we first introduce the problem definition, research background, and the significance of SISR. Secondly, we introduce some related works, including benchmark datasets, upsampling methods, optimization objectives, and image quality assessment methods. Thirdly, we provide a detailed investigation of SISR and give some domain-specific applications of it. Fourthly, we present the reconstruction results of some classic SISR methods to intuitively know their performance. Finally, we discuss some issues that still exist in SISR and summarize some new trends and future directions. This is an exhaustive survey of SISR, which can help researchers better understand SISR and inspire more exciting research in this field. An investigation project for SISR is provided at https://github.com/CV-JunchengLi/SISR-Survey.

REFERENCES

  1. [1] Romero Adriana, Ballas Nicolas, K. Samira Ebrahimi, Chassang Antoine, Gatta Carlo, and Bengio Yoshua. 2015. Fitnets: Hints for thin deep nets. In ICLR.Google ScholarGoogle Scholar
  2. [2] Agustsson Eirikur and Timofte Radu. 2017. NTIRE 2017 challenge on single image super-resolution: Dataset and study. In CVPRW.Google ScholarGoogle ScholarCross RefCross Ref
  3. [3] Ahn Namhyuk, Kang Byungkon, and Sohn Kyung-Ah. 2018. Fast, accurate, and lightweight super-resolution with cascading residual network. In ECCV.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. [4] Ahn Namhyuk, Kang Byungkon, and Sohn Kyung-Ah. 2018. Image super-resolution via progressive cascading residual network. In CVPRW.Google ScholarGoogle ScholarCross RefCross Ref
  5. [5] Ahn Sungsoo, Hu Shell Xu, Damianou Andreas, Lawrence Neil D., and Dai Zhenwen. 2019. Variational information distillation for knowledge transfer. In CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  6. [6] Anwar Saeed, Khan Salman, and Barnes Nick. 2020. A deep journey into super-resolution: A survey. Computing Surveys 53, 3 (2020), 134.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. [7] Arbelaez Pablo, Maire Michael, Fowlkes Charless, and Malik Jitendra. 2010. Contour detection and hierarchical image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 33, 5 (2010), 898916.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. [8] Bevilacqua Marco, Roumy Aline, Guillemot Christine, and Alberi-Morel Marie Line. 2012. Low-complexity single-image super-resolution based on nonnegative neighbor embedding. In BMVC.Google ScholarGoogle ScholarCross RefCross Ref
  9. [9] Blau Yochai, Mechrez Roey, Timofte Radu, Michaeli Tomer, and Zelnik-Manor Lihi. 2018. The 2018 PIRM challenge on perceptual image super-resolution. In ECCVW.Google ScholarGoogle Scholar
  10. [10] Blau Yochai and Michaeli Tomer. 2018. The perception-distortion tradeoff. In CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  11. [11] Bulat Adrian, Yang Jing, and Tzimiropoulos Georgios. 2018. To learn image super-resolution, use a GAN to learn how to do image degradation first. In ECCV.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. [12] Cai Jianrui, Zeng Hui, Yong Hongwei, Cao Zisheng, and Zhang Lei. 2019. Toward real-world single image super-resolution: A new benchmark and a new model. In ICCV.Google ScholarGoogle ScholarCross RefCross Ref
  13. [13] Cai Yuanhao, Lin Jing, Lin Zudi, Wang Haoqian, Zhang Yulun, Pfister Hanspeter, Timofte Radu, and Gool Luc Van. 2022. MST++: Multi-stage spectral-wise transformer for efficient spectral reconstruction. In CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  14. [14] Chunshui Cao, Xianming Liu, Yi Yang, Yinan Yu, Jiang Wang, Zilei Wang, Yongzhen Huang, Liang Wang, Chang Huang, Wei Xu, Deva Ramanan, and Thomas S. Huang. 2015. Look and think twice: Capturing top-down visual attention with feedback convolutional neural networks. In ICCV.Google ScholarGoogle Scholar
  15. [15] Cao Feilong and Liu Huan. 2019. Single image super-resolution via multi-scale residual channel attention network. Neurocomputing 358 (2019), 424436. https://www.sciencedirect.com/science/article/abs/pii/S0925231219307726Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. [16] Carreira Joao, Agrawal Pulkit, Fragkiadaki Katerina, and Malik Jitendra. 2016. Human pose estimation with iterative error feedback. In CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  17. [17] Chang Chia-Yang and Chien Shao-Yi. 2019. Multi-scale dense network for single-image super-resolution. In ICASSP.Google ScholarGoogle ScholarCross RefCross Ref
  18. [18] Chang Hong, Yeung Dit-Yan, and Xiong Yimin. 2004. Super-resolution through neighbor embedding. In CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  19. [19] Chen Chaofeng, Shi Xinyu, Qin Yipeng, Li Xiaoming, Han Xiaoguang, Yang Tao, and Guo Shihui. 2022. Real-world blind super-resolution via feature matching with implicit high-resolution priors. In ACMMM.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. [20] Chen Chang, Xiong Zhiwei, Tian Xinmei, Zha Zheng-Jun, and Wu Feng. 2019. Camera lens super-resolution. In CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  21. [21] Chen Honggang, He Xiaohai, Qing Linbo, Wu Yuanyuan, Ren Chao, Sheriff Ray E., and Zhu Ce. 2022. Real-world single image super-resolution: A brief review. Information Fusion 79 (2022), 124145. https://www.sciencedirect.com/science/article/abs/pii/S1566253521001792Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. [22] Chen Hanting, Wang Yunhe, Guo Tianyu, Xu Chang, Deng Yiping, Liu Zhenhua, Ma Siwei, Xu Chunjing, Xu Chao, and Gao Wen. 2021. Pre-trained image processing transformer. In CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  23. [23] Chen Liangyu, Chu Xiaojie, Zhang Xiangyu, and Sun Jian. 2022. Simple baselines for image restoration. In CECCV.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. [24] Xiangyu Chen, Xintao Wang, Jiantao Zhou, Yu Qiao, and Chao Dong. 2023. Activating more pixels in image super-resolution transformer. In CVPR.Google ScholarGoogle Scholar
  25. [25] Chen Yuhua, Shi Feng, Christodoulou Anthony G., Xie Yibin, Zhou Zhengwei, and Li Debiao. 2018. Efficient and accurate MRI super-resolution using a generative adversarial network and 3D multi-level densely connected network. In MICCAI.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. [26] Chen Zheng, Zhang Yulun, Gu Jinjin, Kong Linghe, Yang Xiaokang, and Yu Fisher. 2023. Dual aggregation transformer for image super-resolution. In ICCV.Google ScholarGoogle ScholarCross RefCross Ref
  27. [27] Zheng Chen, Yulun Zhang, Jinjin Gu, yongbing zhang, Linghe Kong, and Xin Yuan. 2022. Cross aggregation transformer for image restoration. In NeurIPS.Google ScholarGoogle Scholar
  28. [28] Choi Haram, Lee Jeongmin, and Yang Jihoon. 2023. N-gram in swin transformers for efficient lightweight image super-resolution. In CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  29. [29] Chollet François. 2017. Xception: Deep learning with depthwise separable convolutions. In CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  30. [30] Chu Xiaojie, Chen Liangyu, and Yu Wenqing. 2022. NAFSSR: Stereo image super-resolution using NAFNet. In CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  31. [31] Collobert Ronan and Weston Jason. 2008. A unified architecture for natural language processing: Deep neural networks with multitask learning. In ICML.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. [32] Dai Qinyan, Li Juncheng, Yi Qiaosi, Fang Faming, and Zhang Guixu. 2021. Feedback network for mutually boosted stereo image super-resolution and disparity estimation. In ACMMM.Google ScholarGoogle Scholar
  33. [33] Dai Tao, Cai Jianrui, Zhang Yongbing, Xia Shu-Tao, and Zhang Lei. 2019. Second-order attention network for single image super-resolution. In CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  34. [34] Deng Jia, Dong Wei, Socher Richard, Li Li-Jia, Li Kai, and Fei-Fei Li. 2009. ImageNet: A large-scale hierarchical image database. In CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  35. [35] Devlin Jacob, Chang Ming-Wei, Lee Kenton, and Toutanova Kristina. 2018. BERT: Pre-training of deep bidirectional transformers for language understanding. arXiv:1810.04805. Retrieved from https://arxiv.org/abs/1810.04805Google ScholarGoogle Scholar
  36. [36] Ding Keyan, Ma Kede, Wang Shiqi, and Simoncelli Eero P.. 2020. Image quality assessment: Unifying structure and texture similarity. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5 (2020), 25672581.Google ScholarGoogle Scholar
  37. [37] Dogan Berk, Gu Shuhang, and Timofte Radu. 2019. Exemplar guided face image super-resolution without facial landmarks. In CVPRW.Google ScholarGoogle ScholarCross RefCross Ref
  38. [38] Dong Chao, Loy Chen Change, He Kaiming, and Tang Xiaoou. 2014. Learning a deep convolutional network for image super-resolution. In ECCV.Google ScholarGoogle ScholarCross RefCross Ref
  39. [39] Dong Chao, Loy Chen Change, and Tang Xiaoou. 2016. Accelerating the super-resolution convolutional neural network. In ECCV.Google ScholarGoogle ScholarCross RefCross Ref
  40. [40] Dong Weisheng, Zhang Lei, Shi Guangming, and Wu Xiaolin. 2011. Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization. IEEE Transactions on Image Processing 20, 7 (2011), 18381857.Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. [41] Dong Xiaoyu, Wang Longguang, Sun Xu, Jia Xiuping, Gao Lianru, and Zhang Bing. 2020. Remote sensing image super-resolution using second-order multi-scale networks. IEEE Transactions on Geoscience and Remote Sensing 59, 4 (2020), 34733485.Google ScholarGoogle ScholarCross RefCross Ref
  42. [42] Duchon Claude E.. 1979. Lanczos filtering in one and two dimensions. Journal of Applied Meteorology and Climatology 18, 8 (1979), 10161022.Google ScholarGoogle ScholarCross RefCross Ref
  43. [43] Fang Faming, Li Juncheng, and Zeng Tieyong. 2020. Soft-edge assisted network for single image super-resolution. IEEE Transactions on Image Processing 29 (2020), 46564668. https://ieeexplore.ieee.org/abstract/document/9007623Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. [44] Feng Chun-Mei, Yan Yunlu, Fu Huazhu, Chen Li, and Xu Yong. 2021. Task transformer network for joint MRI reconstruction and super-resolution. In MICCAI.Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. [45] Fu Ying, Zhang Tao, Zheng Yinqiang, Zhang Debing, and Huang Hua. 2019. Hyperspectral image super-resolution with optimized RGB guidance. In CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  46. [46] Fujimoto Azuma, Ogawa Toru, Yamamoto Kazuyoshi, Matsui Yusuke, Yamasaki Toshihiko, and Aizawa Kiyoharu. 2016. Manga109 dataset and creation of metadata. In MANPU.Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. [47] Fuoli Dario, Gool Luc Van, and Timofte Radu. 2021. Fourier space losses for efficient perceptual image super-resolution. In ICCV.Google ScholarGoogle ScholarCross RefCross Ref
  48. [48] Gao Guangwei, Li Wenjie, Li Juncheng, Wu Fei, Lu Huimin, and Yu Yi. 2022. Feature distillation interaction weighting network for lightweight image super-resolution. In AAAI.Google ScholarGoogle ScholarCross RefCross Ref
  49. [49] Gao Guangwei, Tang Lei, Wu Fei, Lu Huimin, and Yang Jian. 2023. JDSR-GAN: Constructing an efficient joint learning network for masked face super-resolution. IEEE Transactions on Multimedia 25 (2023), 15051512. https://ieeexplore.ieee.org/abstract/document/10032643Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. [50] Gao Guangwei, Wang Zhengxue, Li Juncheng, Li Wenjie, Yu Yi, and Zeng Tieyong. 2022. Lightweight bimodal network for single-image super-resolution via symmetric CNN and recursive transformer. In IJCAI.Google ScholarGoogle Scholar
  51. [51] Gao Qinquan, Zhao Yan, Li Gen, and Tong Tong. 2018. Image super-resolution using knowledge distillation. In ACCV.Google ScholarGoogle Scholar
  52. [52] Sicheng Gao, Xuhui Liu, Bohan Zeng, Sheng Xu, Yanjing Li, Xiaoyan Luo, Jianzhuang Liu, Xiantong Zhen, and Baochang Zhang. 2023. Implicit diffusion models for continuous super-resolution. In CVPR.Google ScholarGoogle Scholar
  53. [53] Gatys Leon, Ecker Alexander S., and Bethge Matthias. 2015. Texture synthesis using convolutional neural networks. In NeurIPS.Google ScholarGoogle Scholar
  54. [54] Gatys Leon A., Ecker Alexander S., and Bethge Matthias. 2015. A neural algorithm of artistic style. arXiv:1508.06576. Retrieved from https://arxiv.org/abs/1508.06576Google ScholarGoogle Scholar
  55. [55] Georgescu Mariana-Iuliana, Ionescu Radu Tudor, Miron Andreea-Iuliana, Savencu Olivian, Ristea Nicolae-Cătălin, Verga Nicolae, and Khan Fahad Shahbaz. 2023. Multimodal multi-head convolutional attention with various kernel sizes for medical image super-resolution. In CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  56. [56] Goodfellow Ian, Pouget-Abadie Jean, Mirza Mehdi, Xu Bing, Warde-Farley David, Ozair Sherjil, Courville Aaron, and Bengio Yoshua. 2014. Generative adversarial nets. In NeurIPS.Google ScholarGoogle Scholar
  57. [57] Gu Jinjin, Lu Hannan, Zuo Wangmeng, and Dong Chao. 2019. Blind super-resolution with iterative kernel correction. In CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  58. [58] Gu Jun, Sun Xian, Zhang Yue, Fu Kun, and Wang Lei. 2019. Deep residual squeeze and excitation network for remote sensing image super-resolution. Remote Sensing 11, 15 (2019), 1817.Google ScholarGoogle ScholarCross RefCross Ref
  59. [59] Gu Yuchao, Wang Xintao, Xie Liangbin, Dong Chao, Li Gen, Shan Ying, and Cheng Ming-Ming. 2022. VQFR: Blind face restoration with vector-quantized dictionary and parallel decoder. In ECCV.Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. [60] Guo Yong, Chen Jian, Wang Jingdong, Chen Qi, Cao Jiezhang, Deng Zeshuai, Xu Yanwu, and Tan Mingkui. 2020. Closed-loop matters: Dual regression networks for single image super-resolution. In CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  61. [61] Han Wei, Chang Shiyu, Liu Ding, Yu Mo, Witbrock Michael, and Huang Thomas S.. 2018. Image super-resolution via dual-state recurrent networks. In CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  62. [62] Haris Muhammad, Shakhnarovich Greg, and Ukita Norimichi. 2020. Deep back-projectinetworks for single image super-resolution. IEEE Transactions on Pattern Analysis and Machine Intelligence 43, 12 (2020), 43234337.Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. [63] Haut Juan Mario, Fernandez-Beltran Ruben, Paoletti Mercedes E., Plaza Javier, Plaza Antonio, and Pla Filiberto. 2018. A new deep generative network for unsupervised remote sensing single-image super-resolution. IEEE Transactions on Geoscience and Remote sensing 56, 11 (2018), 67926810.Google ScholarGoogle ScholarCross RefCross Ref
  64. [64] He Kaiming and Sun Jian. 2015. Convolutional neural networks at constrained time cost. In CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  65. [65] He Kaiming, Zhang Xiangyu, Ren Shaoqing, and Sun Jian. 2016. Deep residual learning for image recognition. In CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  66. [66] Heusel Martin, Ramsauer Hubert, Unterthiner Thomas, Nessler Bernhard, and Hochreiter Sepp. 2017. GANs trained by a two time-scale update rule converge to a local nash equilibrium. In NeurIPS.Google ScholarGoogle Scholar
  67. [67] Hinton Geoffrey, Vinyals Oriol, and Dean Jeff. 2015. Distilling the knowledge in a neural network. arXiv:1503.02531. Retrieved from https://arxiv.org/abs/1503.02531Google ScholarGoogle Scholar
  68. [68] Ho Jonathan, Jain Ajay, and Abbeel Pieter. 2020. Denoising diffusion probabilistic models. In NeurIPS.Google ScholarGoogle Scholar
  69. [69] Hu Jie, Shen Li, and Sun Gang. 2018. Squeeze-and-excitation networks. In CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  70. [70] Hu Xuecai, Mu Haoyuan, Zhang Xiangyu, Wang Zilei, Tan Tieniu, and Sun Jian. 2019. Meta-SR: A magnification-arbitrary network for super-resolution. In CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  71. [71] Hu Xuecai, Zhang Zhang, Shan Caifeng, Wang Zilei, Wang Liang, and Tan Tieniu. 2020. Meta-USR: A unified super-resolution network for multiple degradation parameters. IEEE Transactions on Neural Networks and Learning Systems 32, 9 (2020), 41514165.Google ScholarGoogle ScholarCross RefCross Ref
  72. [72] Huang Gao, Liu Zhuang, Maaten Laurens Van Der, and Weinberger Kilian Q.. 2017. Densely connected convolutional networks. In CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  73. [73] Huang Jia-Bin, Singh Abhishek, and Ahuja Narendra. 2015. Single image super-resolution from transformed self-exemplars. In CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  74. [74] Hui Zheng, Gao Xinbo, Yang Yunchu, and Wang Xiumei. 2019. Lightweight image super-resolution with information multi-distillation network. In ACMMM.Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. [75] Hui Zheng, Wang Xiumei, and Gao Xinbo. 2018. Fast and accurate single image super-resolution via information distillation network. In CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  76. [76] Jeon Daniel S., Baek Seung-Hwan, Choi Inchang, and Kim Min H.. 2018. Enhancing the spatial resolution of stereo images using a parallax prior. In CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  77. [77] Sun Jian, Xu Zongben, and Shum Heung-Yeung. 2008. Image super-resolution using gradient profile prior. In CVPR.Google ScholarGoogle Scholar
  78. [78] Jiang Junjun, Sun He, Liu Xianming, and Ma Jiayi. 2020. Learning spatial-spectral prior for super-resolution of hyperspectral imagery. IEEE Transactions on Computational Imaging 6 (2020), 10821096. https://ieeexplore.ieee.org/abstract/document/9097432Google ScholarGoogle ScholarCross RefCross Ref
  79. [79] Jinjin Gu, Haoming Cai, Haoyu Chen, Xiaoxing Ye, Ren Jimmy S., and Chao Dong. 2020. PIPAL: A large-scale image quality assessment dataset for perceptual image restoration. In ECCV.Google ScholarGoogle ScholarDigital LibraryDigital Library
  80. [80] Johnson Justin, Alahi Alexandre, and Fei-Fei Li. 2016. Perceptual losses for real-time style transfer and super-resolution. In ECCV.Google ScholarGoogle ScholarCross RefCross Ref
  81. [81] Jolicoeur-Martineau Alexia. 2018. The relativistic discriminator: A key element missing from standard GAN. arXiv:1807.00734. Retrieved from https://arxiv.org/abs/1807.00734Google ScholarGoogle Scholar
  82. [82] Karras Tero, Laine Samuli, and Aila Timo. 2019. A style-based generator architecture for generative adversarial networks. In CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  83. [83] Kim Jiwon, Lee Jung Kwon, and Lee Kyoung Mu. 2016. Accurate image super-resolution using very deep convolutional networks. In CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  84. [84] Kim Jiwon, Lee Jung Kwon, and Lee Kyoung Mu. 2016. Deeply-recursive convolutional network for image super-resolution. In CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  85. [85] Kim K. I. and Kwon Y.. 2010. Single-image super-resolution using sparse regression and natural image prior. IEEE Transactions on Pattern Analysis and Machine Intelligence 32, 6 (2010), 11271133.Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. [86] Krizhevsky Alex, Sutskever Ilya, and Hinton Geoffrey E.. 2012. ImageNet classification with deep convolutional neural networks. In NeurIPS.Google ScholarGoogle Scholar
  87. [87] Lai Wei-Sheng, Huang Jia-Bin, Ahuja Narendra, and Yang Ming-Hsuan. 2017. Deep Laplacian pyramid networks for fast and accurate super-resolution. In CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  88. [88] Lai Wei-Sheng, Huang Jia-Bin, Ahuja Narendra, and Yang Ming-Hsuan. 2017. Deep Laplacian pyramid networks for fast and accurate super-resolution. In CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  89. [89] Lan Rushi, Sun Long, Liu Zhenbing, Lu Huimin, Pang Cheng, and Luo Xiaonan. 2020. MADNet: A fast and lightweight network for single-image super resolution. IEEE Transactions on Cybernetics 51, 3 (2020), 14431453.Google ScholarGoogle ScholarCross RefCross Ref
  90. [90] LeCun Y., Bengio Y., and Hinton G.. 2015. Deep learning. Nature 521, 7553 (2015), 436444.Google ScholarGoogle ScholarCross RefCross Ref
  91. [91] Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero, Andrew Cunningham, Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, and Wenzhe Shi. 2017. Photo-realistic single image super-resolution using a generative adversarial network. In CVPR.Google ScholarGoogle Scholar
  92. [92] Lee Cheng-Han, Liu Ziwei, Wu Lingyun, and Luo Ping. 2020. MaskGAN: Towards diverse and interactive facial image manipulation. In CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  93. [93] Lee Wonkyung, Lee Junghyup, Kim Dohyung, and Ham Bumsub. 2020. Learning with privileged information for efficient image super-resolution. In ECCV.Google ScholarGoogle ScholarDigital LibraryDigital Library
  94. [94] Lei Sen and Shi Zhenwei. 2021. Hybrid-scale self-similarity exploitation for remote sensing image super-resolution. IEEE Transactions on Geoscience and Remote Sensing 60 (2021), 110. https://ieeexplore.ieee.org/abstract/document/9400474Google ScholarGoogle Scholar
  95. [95] Li Huixia, Yan Chenqian, Lin Shaohui, Zheng Xiawu, Zhang Baochang, Yang Fan, and Ji Rongrong. 2020. PAMS: Quantized super-resolution via parameterized max scale. In ECCV.Google ScholarGoogle ScholarDigital LibraryDigital Library
  96. [96] Li Haoying, Yang Yifan, Chang Meng, Chen Shiqi, Feng Huajun, Xu Zhihai, Li Qi, and Chen Yueting. 2022. SRDiff: Single image super-resolution with diffusion probabilistic models. Neurocomputing 479 (2022), 4759. https://www.sciencedirect.com/science/article/pii/S0925231222000522Google ScholarGoogle ScholarDigital LibraryDigital Library
  97. [97] Li Juncheng, Fang Faming, Li Jiaqian, Mei Kangfu, and Zhang Guixu. 2020. MDCN: Multi-scale dense cross network for image super-resolution. IEEE Transactions on Circuits and Systems for Video Technology 31, 7 (2020), 25472561.Google ScholarGoogle ScholarCross RefCross Ref
  98. [98] Li Juncheng, Fang Faming, Mei Kangfu, and Zhang Guixu. 2018. Multi-scale residual network for image super-resolution. In ECCV.Google ScholarGoogle ScholarDigital LibraryDigital Library
  99. [99] Li Juncheng, Yuan Yiting, Mei Kangfu, and Fang Faming. 2019. Lightweight and accurate recursive fractal network for image super-resolution. In ICCVW.Google ScholarGoogle ScholarCross RefCross Ref
  100. [100] Li Meng, Ma Bo, and Zhang Yulin. 2023. Lightweight image super-resolution with pyramid clustering transformer. IEEE Transactions on Circuits and Systems for Video Technology (2023). https://ieeexplore.ieee.org/abstract/document/10185933Google ScholarGoogle Scholar
  101. [101] Li Wenjie, Li Juncheng, Gao Guangwei, Deng Weihong, Zhou Jiantao, Yang Jian, and Qi Guo-Jun. 2023. Cross-receptive focused inference network for lightweight image super-resolution. IEEE Transactions on Multimedia 26 (2023), 864877. https://ieeexplore.ieee.org/abstract/document/10114600Google ScholarGoogle ScholarDigital LibraryDigital Library
  102. [102] Li Xiang, Dong Jiangxin, Tang Jinhui, and Pan Jinshan. 2023. DLGSANet: Lightweight dynamic local and global self-attention networks for image super-resolution. In ICCV.Google ScholarGoogle ScholarCross RefCross Ref
  103. [103] Li Yawei, Fan Yuchen, Xiang Xiaoyu, Demandolx Denis, Ranjan Rakesh, Timofte Radu, and Gool Luc Van. 2023. Efficient and explicit modelling of image hierarchies for image restoration. In CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  104. [104] Li Yong, Zhang Lei, Dingl Chen, Wei Wei, and Zhang Yanning. 2018. Single hyperspectral image super-resolution with grouped deep recursive residual network. In BigMM.Google ScholarGoogle ScholarCross RefCross Ref
  105. [105] Li Zheyuan, Liu Yingqi, Chen Xiangyu, Cai Haoming, Gu Jinjin, Qiao Yu, and Dong Chao. 2022. Blueprint separable residual network for efficient image super-resolution. In CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  106. [106] Li Zhen, Yang Jinglei, Liu Zheng, Yang Xiaomin, Jeon Gwanggil, and Wu Wei. 2019. Feedback network for image super-resolution. In CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  107. [107] Liang Jingyun, Cao Jiezhang, Sun Guolei, Zhang Kai, Gool Luc Van, and Timofte Radu. 2021. SwinIR: Image restoration using swin transformer. In ICCVW.Google ScholarGoogle ScholarCross RefCross Ref
  108. [108] Lim Bee, Son Sanghyun, Kim Heewon, Nah Seungjun, and Lee Kyoung Mu. 2017. Enhanced deep residual networks for single image super-resolution. In CVPRW.Google ScholarGoogle ScholarCross RefCross Ref
  109. [109] Lin Jin, Luo Xiaotong, Hong Ming, Qu Yanyun, Xie Yuan, and Wu Zongze. 2023. Memory-friendly scalable super-resolution via rewinding lottery ticket hypothesis. In CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  110. [110] Lin Xinqi, He Jingwen, Chen Ziyan, Lyu Zhaoyang, Fei Ben, Dai Bo, Ouyang Wanli, Qiao Yu, and Dong Chao. 2023. DiffBIR: Towards blind image restoration with generative diffusion prior. arXiv:2308.15070. Retrieved from https://arxiv.org/abs/2308.15070Google ScholarGoogle Scholar
  111. [111] Liu Anran, Liu Yihao, Gu Jinjin, Qiao Yu, and Dong Chao. 2022. Blind image super-resolution: A survey and beyond. IEEE Transactions on Pattern Analysis and Machine Intelligence 45, 5 (2022), 54615480.Google ScholarGoogle Scholar
  112. [112] Liu Denghong, Li Jie, and Yuan Qiangqiang. 2021. A spectral grouping and attention-driven residual dense network for hyperspectral image super-resolution. IEEE Transactions on Geoscience and Remote Sensing 59, 9 (2021), 77117725.Google ScholarGoogle ScholarCross RefCross Ref
  113. [113] Liu Ding, Wen Bihan, Fan Yuchen, Loy Chen Change, and Huang Thomas S.. 2018. Non-local recurrent network for image restoration. In NeurIPS.Google ScholarGoogle Scholar
  114. [114] Liu Jie, Tang Jie, and Wu Gangshan. 2020. Residual feature distillation network for lightweight image super-resolution. In ECCVW.Google ScholarGoogle ScholarDigital LibraryDigital Library
  115. [115] Liu Jie, Zhang Wenjie, Tang Yuting, Tang Jie, and Wu Gangshan. 2020. Residual feature aggregation network for image super-resolution. In CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  116. [116] Liu Ziyu, Feng Ruyi, Wang Lizhe, Han Wei, and Zeng Tieyong. 2022. Dual learning-based graph neural network for remote sensing image super-resolution. IEEE Transactions on Geoscience and Remote Sensing 60 (2022), 114. https://ieeexplore.ieee.org/abstract/document/9861602Google ScholarGoogle Scholar
  117. [117] Liu Ze, Lin Yutong, Cao Yue, Hu Han, Wei Yixuan, Zhang Zheng, Lin Stephen, and Guo Baining. 2021. Swin transformer: Hierarchical vision transformer using shifted windows. In CVPR.Google ScholarGoogle Scholar
  118. [118] Liu Ziwei, Luo Ping, Wang Xiaogang, and Tang Xiaoou. 2015. Deep learning face attributes in the wild. In ICCV.Google ScholarGoogle ScholarDigital LibraryDigital Library
  119. [119] Lu Zhisheng, Liu Hong, Li Juncheng, and Zhang Linlin. 2021. Transformer for single image super-resolution. In CVPRW.Google ScholarGoogle Scholar
  120. [120] Luo Xiaotong, Ai Zekun, Liang Qiuyuan, Liu Ding, Xie Yuan, Qu Yanyun, and Fu Yun. 2024. AdaFormer: Efficient transformer with adaptive token sparsification for image super-resolution. In AAAI.Google ScholarGoogle ScholarCross RefCross Ref
  121. [121] Luo Xiaotong, Dai Mingliang, Zhang Yulun, Xie Yuan, Liu Ding, Qu Yanyun, Fu Yun, and Zhang Junping. 2022. Adjustable memory-efficient image super-resolution via individual kernel sparsity. In ACMMM.Google ScholarGoogle ScholarDigital LibraryDigital Library
  122. [122] Luo Xiaotong, Liang Qiuyuan, Liu Ding, and Qu Yanyun. 2021. Boosting lightweight single image super-resolution via joint-distillation. In ACMMM.Google ScholarGoogle ScholarDigital LibraryDigital Library
  123. [123] Luo Xiaotong, Qu Yanyun, Xie Yuan, Zhang Yulun, Li Cuihua, and Fu Yun. 2022. Lattice network for lightweight image restoration. IEEE Transactions on Pattern Analysis and Machine Intelligence 45, 4 (2022), 48264842.Google ScholarGoogle Scholar
  124. [124] Luo Zhengxiong, Huang Yan, Li Shang, Wang Liang, and Tan Tieniu. 2020. Unfolding the alternating optimization for blind super resolution. In NeurIPS.Google ScholarGoogle Scholar
  125. [125] Ma Cheng, Rao Yongming, Cheng Yean, Chen Ce, Lu Jiwen, and Zhou Jie. 2020. Structure-preserving super resolution with gradient guidance. In CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  126. [126] Ma Chao, Yang Chih-Yuan, Yang Xiaokang, and Yang Ming-Hsuan. 2017. Learning a no-reference quality metric for single-image super-resolution. Computer Vision and Image Understanding 158 (2017), 116. https://www.sciencedirect.com/science/article/pii/S107731421630203XGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  127. [127] Ma Kede, Duanmu Zhengfang, Wu Qingbo, Wang Zhou, Yong Hongwei, Li Hongliang, and Zhang Lei. 2016. Waterloo exploration database: New challenges for image quality assessment models. IEEE Transactions on Image Processing 26, 2 (2016), 10041016.Google ScholarGoogle ScholarDigital LibraryDigital Library
  128. [128] Ma Yinglan, Xiong Hongyu, Hu Zhe, and Ma Lizhuang. 2019. Efficient super resolution using binarized neural network. In CVPRW.Google ScholarGoogle ScholarCross RefCross Ref
  129. [129] Maeda Shunta. 2020. Unpaired image super-resolution using pseudo-supervision. In CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  130. [130] Martin David, Fowlkes Charless, Tal Doron, and Malik Jitendra. 2001. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In ICCV.Google ScholarGoogle ScholarCross RefCross Ref
  131. [131] Mei Kangfu, Jiang Aiwen, Li Juncheng, Liu Bo, Ye Jihua, and Wang Mingwen. 2019. Deep residual refining based pseudo-multi-frame network for effective single image super-resolution. IET Image Processing 13, 4 (2019), 591599.Google ScholarGoogle ScholarCross RefCross Ref
  132. [132] Mei Kangfu, Jiang Aiwen, Li Juncheng, Ye Jihua, and Wang Mingwen. 2018. An effective single-image super-resolution model using squeeze-and-excitation networks. In NeurIPS.Google ScholarGoogle ScholarDigital LibraryDigital Library
  133. [133] Mei Shaohui, Yuan Xin, Ji Jingyu, Zhang Yifan, Wan Shuai, and Du Qian. 2017. Hyperspectral image spatial super-resolution via 3D full convolutional neural network. Remote Sensing 9, 11 (2017), 1139.Google ScholarGoogle ScholarCross RefCross Ref
  134. [134] Mei Yiqun, Fan Yuchen, Zhou Yuqian, Huang Lichao, Huang Thomas S., and Shi Honghui. 2020. Image super-resolution with cross-scale non-local attention and exhaustive self-exemplars mining. In CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  135. [135] Mittal Anish, Moorthy Anush Krishna, and Bovik Alan Conrad. 2012. No-reference image quality assessment in the spatial domain. IEEE Transactions on Image Processing 21, 12 (2012), 46954708.Google ScholarGoogle ScholarDigital LibraryDigital Library
  136. [136] Mittal Anish, Soundararajan Rajiv, and Bovik Alan C.. 2012. Making a “completely blind” image quality analyzer. IEEE Signal Processing Letters 20, 3 (2012), 209212.Google ScholarGoogle ScholarCross RefCross Ref
  137. [137] Muqeet Abdul, Hwang Jiwon, Yang Subin, Kang JungHeum, Kim Yongwoo, and Bae Sung-Ho. 2020. Multi-attention based ultra lightweight image super-resolution. In ECCV.Google ScholarGoogle ScholarDigital LibraryDigital Library
  138. [138] Niu Ben, Wen Weilei, Ren Wenqi, Zhang Xiangde, Yang Lianping, Wang Shuzhen, Zhang Kaihao, Cao Xiaochun, and Shen Haifeng. 2020. Single image super-resolution via a holistic attention network. In ECCV.Google ScholarGoogle Scholar
  139. [139] Park Seong-Jin, Son Hyeongseok, Cho Sunghyun, Hong Ki-Sang, and Lee Seungyong. 2018. SRFeat: Single image super-resolution with feature discrimination. In ECCV.Google ScholarGoogle ScholarDigital LibraryDigital Library
  140. [140] Peng Cheng, Lin Wei-An, Liao Haofu, Chellappa Rama, and Zhou S. Kevin. 2020. SAINT: Spatially aware interpolation network for medical slice synthesis. In CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  141. [141] Qin Jinghui, Huang Yongjie, and Wen Wushao. 2020. Multi-scale feature fusion residual network for Single Image Super-Resolution. Neurocomputing 379 (2020), 334342. https://www.sciencedirect.com/science/article/pii/S0925231219315140Google ScholarGoogle ScholarDigital LibraryDigital Library
  142. [142] Rad Mohammad Saeed, Bozorgtabar Behzad, Marti Urs-Viktor, Basler Max, Ekenel Hazim Kemal, and Thiran Jean-Philippe. 2019. SROBB: Targeted perceptual loss for single image super-resolution. In ICCV.Google ScholarGoogle ScholarCross RefCross Ref
  143. [143] Radford Alec, Metz Luke, and Chintala Soumith. 2015. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv:1511.06434. Retrieved from https://arxiv.org/abs/1511.06434Google ScholarGoogle Scholar
  144. [144] Radford Alec, Wu Jeffrey, Child Rewon, Luan David, Amodei Dario, and Sutskever Ilya. 2019. Language models are unsupervised multitask learners. OpenAI Blog (2019).Google ScholarGoogle Scholar
  145. [145] Rickard Lee J., Basedow Robert W., Zalewski Edward F., Silverglate Peter R., and Landers Mark. 1993. HYDICE: An airborne system for hyperspectral imaging. In Imaging Spectrometry of the Terrestrial Environment. SPIE Digital Library. 173179. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/1937/1/HYDICE-an-airborne-system-for-hyperspectral-imaging/10.1117/12.157055.short#_=_Google ScholarGoogle ScholarCross RefCross Ref
  146. [146] Rombach Robin, Blattmann Andreas, Lorenz Dominik, Esser Patrick, and Ommer Björn. 2022. High-resolution image synthesis with latent diffusion models. In CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  147. [147] Saharia Chitwan, Ho Jonathan, Chan William, Salimans Tim, Fleet David J., and Norouzi Mohammad. 2022. Image super-resolution via iterative refinement. IEEE Transactions on Pattern Analysis and Machine Intelligence 45, 4 (2022), 47134726.Google ScholarGoogle Scholar
  148. [148] Shaham Tamar Rott, Dekel Tali, and Michaeli Tomer. 2019. SinGAN: Learning a generative model from a single natural image. In ICCV.Google ScholarGoogle ScholarCross RefCross Ref
  149. [149] Shuyao Shang, Zhengyang Shan, Guangxing Liu, and Jinglin Zhang. 2023. ResDiff: Combining CNN and diffusion model for image super-resolution. In AAAI.Google ScholarGoogle Scholar
  150. [150] Shen Mingyu, Yu Pengfei, Wang Ronggui, Yang Juan, Xue Lixia, and Hu Min. 2019. Multipath feedforward network for single image super-resolution. Multimedia Tools and Applications 78 (2019), 1962119640. https://link.springer.com/article/10.1007/s11042-019-7334-9#citeasGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  151. [151] Shi Wenzhe, Caballero Jose, Huszár Ferenc, Totz Johannes, Aitken Andrew P., Bishop Rob, Rueckert Daniel, and Wang Zehan. 2016. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  152. [152] Shocher Assaf, Cohen Nadav, and Irani Michal. 2018. “zero-shot” super-resolution using deep internal learning. In CVPR.Google ScholarGoogle Scholar
  153. [153] Simonyan Karen and Zisserman Andrew. 2014. Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556. Retrieved from https://arxiv.org/abs/1409.1556Google ScholarGoogle Scholar
  154. [154] Bin Sun, Yulun Zhang, Songyao Jiang, and Yun Fu. 2023. Hybrid pixel-unshuffled network for lightweight image super-resolution. In AAAI.Google ScholarGoogle Scholar
  155. [155] Long Sun, Jinshan Pan, and Jinhui Tang. 2022. Shufflemixer: An efficient convnet for image super-resolution. In NeurIPS.Google ScholarGoogle Scholar
  156. [156] Szegedy Christian, Ioffe Sergey, Vanhoucke Vincent, and Alemi Alexander A.. 2017. Inception-v4, inception-ResNet and the impact of residual connections on learning. In AAAI.Google ScholarGoogle ScholarCross RefCross Ref
  157. [157] Szegedy Christian, Vanhoucke Vincent, Ioffe Sergey, Shlens Jon, and Wojna Zbigniew. 2016. Rethinking the inception architecture for computer vision. In CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  158. [158] Tai Ying, Yang Jian, and Liu Xiaoming. 2017. Image super-resolution via deep recursive residual network. In CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  159. [159] Tai Ying, Yang Jian, Liu Xiaoming, and Xu Chunyan. 2017. MemNet: A persistent memory network for image restoration. In CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  160. [160] Timofte Radu, Agustsson Eirikur, Gool Luc Van, Yang Ming-Hsuan, and Zhang Lei. 2017. NTIRE 2017 challenge on single image super-resolution: Methods and results. In CVPRW.Google ScholarGoogle ScholarCross RefCross Ref
  161. [161] Timofte Radu, Rothe Rasmus, and Gool Luc Van. 2016. Seven ways to improve example-based single image super resolution. In CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  162. [162] Tong Tong, Li Gen, Liu Xiejie, and Gao Qinquan. 2017. Image super-resolution using dense skip connections. In ICCV.Google ScholarGoogle ScholarCross RefCross Ref
  163. [163] Duong Vinh Van, Huu Thuc Nguyen, Yim Jonghoon, and Jeon Byeungwoo. 2023. Light field image super-resolution network via joint spatial-angular and epipolar information. IEEE Transactions on Computational Imaging 9 (2023), 350366. https://ieeexplore.ieee.org/abstract/document/10081009Google ScholarGoogle ScholarCross RefCross Ref
  164. [164] Vaswani Ashish, Shazeer Noam, Parmar Niki, Uszkoreit Jakob, Jones Llion, Gomez Aidan N., Kaiser Łukasz, and Polosukhin Illia. 2017. Attention is all you need. In NeurIPS.Google ScholarGoogle ScholarDigital LibraryDigital Library
  165. [165] Wang C., Li Z., and Shi J.. 2019. Lightweight image super-resolution with adaptive weighted learning network. arXiv:1904.02358. Retrieved from https://arxiv.org/abs/1904.02358Google ScholarGoogle Scholar
  166. [166] Wang Hang, Chen Xuanhong, Ni Bingbing, Liu Yutian, and Liu Jinfan. 2023. Omni aggregation networks for lightweight image super-resolution. In CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  167. [167] Wang Jianyi, Yue Zongsheng, Zhou Shangchen, Chan Kelvin C. K., and Loy Chen Change. 2023. Exploiting diffusion prior for real-world image super-resolution. arXiv:2305.07015. Retrieved from https://arxiv.org/abs/2305.07015Google ScholarGoogle Scholar
  168. [168] Wang Longguang, Dong Xiaoyu, Wang Yingqian, Ying Xinyi, Lin Zaiping, An Wei, and Guo Yulan. 2021. Exploring sparsity in image super-resolution for efficient inference. In CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  169. [169] Longguang Wang, Yulan Guo, Yingqian Wang, Zhengfa Liang, Zaiping Lin, Jungang Yang, and Wei An. 2020. Parallax attention for unsupervised stereo correspondence learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 4 (202), 2108–2125.Google ScholarGoogle Scholar
  170. [170] Wang Li, Li Dong, Zhu Yousong, Tian Lu, and Shan Yi. 2020. Dual super-resolution learning for semantic segmentation. In CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  171. [171] Wang Longguang, Wang Yingqian, Dong Xiaoyu, Xu Qingyu, Yang Jungang, An Wei, and Guo Yulan. 2021. Unsupervised degradation representation learning for blind super-resolution. In CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  172. [172] Wang Longguang, Wang Yingqian, Liang Zhengfa, Lin Zaiping, Yang Jungang, An Wei, and Guo Yulan. 2019. Learning parallax attention for stereo image super-resolution. In CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  173. [173] Longguang Wang, Yingqian Wang, Zaiping Lin, Jungang Yang, Wei An, and Yulan Guo. 2021. Learning a single network for scale-arbitrary super-resolution. In CVPR.Google ScholarGoogle Scholar
  174. [174] Wang Xiaolong, Girshick Ross, Gupta Abhinav, and He Kaiming. 2018. Non-local neural networks. In CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  175. [175] Wang Xintao, Li Yu, Zhang Honglun, and Shan Ying. 2021. Towards real-world blind face restoration with generative facial prior. In CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  176. [176] Wang Xintao, Yu Ke, Dong Chao, and Loy Chen Change. 2018. Recovering realistic texture in image super-resolution by deep spatial feature transform. In CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  177. [177] Wang Xintao, Yu Ke, Wu Shixiang, Gu Jinjin, Liu Yihao, Dong Chao, Qiao Yu, and Loy Chen Change. 2018. ESRGAN: Enhanced super-resolution generative adversarial networks. In ECCV.Google ScholarGoogle Scholar
  178. [178] Wang Yanbo, Lin Chuming, Luo Donghao, Tai Ying, Zhang Zhizhong, and Xie Yuan. 2023. High-resolution GAN inversion for degraded images in large diverse datasets. In AAAI.Google ScholarGoogle Scholar
  179. [179] Wang Yunlong, Liu Fei, Zhang Kunbo, Hou Guangqi, Sun Zhenan, and Tan Tieniu. 2018. LFNet: A novel bidirectional recurrent convolutional neural network for light-field image super-resolution. IEEE Transactions on Image Processing 27, 9 (2018), 42744286.Google ScholarGoogle ScholarCross RefCross Ref
  180. [180] Wang Yifan, Perazzi Federico, McWilliams Brian, Sorkine-Hornung Alexander, Sorkine-Hornung Olga, and Schroers Christopher. 2018. A fully progressive approach to single-image super-resolution. In CVPRW.Google ScholarGoogle ScholarCross RefCross Ref
  181. [181] Wang Yu, Shao Zhenfeng, Lu Tao, Wu Changzhi, and Wang Jiaming. 2023. Remote sensing image super-resolution via multiscale enhancement network. IEEE Geoscience and Remote Sensing Letters 20 (2023), 15. https://ieeexplore.ieee.org/abstract/document/10050509Google ScholarGoogle Scholar
  182. [182] Wang Yukai, Teng Qizhi, He Xiaohai, Feng Junxi, and Zhang Tingrong. 2019. CT-image of rock samples super resolution using 3D convolutional neural network. Computers & Geosciences 133 (2019), 104314. https://www.sciencedirect.com/science/article/pii/S0098300418310562Google ScholarGoogle ScholarCross RefCross Ref
  183. [183] Wang Yingqian, Wang Longguang, Wu Gaochang, Yang Jungang, An Wei, Yu Jingyi, and Guo Yulan. 2022. Disentangling light fields for super-resolution and disparity estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence 45, 1 (2022), 425443.Google ScholarGoogle ScholarCross RefCross Ref
  184. [184] Wang Yingqian, Wang Longguang, Yang Jungang, An Wei, and Guo Yulan. 2019. Flickr1024: A large-scale dataset for stereo image super-resolution. In ICCVW.Google ScholarGoogle ScholarCross RefCross Ref
  185. [185] Wang Yingqian, Wang Longguang, Yang Jungang, An Wei, Yu Jingyi, and Guo Yulan. 2020. Spatial-angular interaction for light field image super-resolution. In ECCV.Google ScholarGoogle ScholarDigital LibraryDigital Library
  186. [186] Wang Yingqian, Yang Jungang, Wang Longguang, Ying Xinyi, Wu Tianhao, An Wei, and Guo Yulan. 2020. Light field image super-resolution using deformable convolution. IEEE Transactions on Image Processing 30 (2020), 10571071. https://ieeexplore.ieee.org/abstract/document/9286855Google ScholarGoogle ScholarCross RefCross Ref
  187. [187] Wang Yingqian, Ying Xinyi, Wang Longguang, Yang Jungang, An Wei, and Guo Yulan. 2021. Symmetric parallax attention for stereo image super-resolution. In CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  188. [188] Wang Zhou and Bovik Alan C.. 2009. Mean squared error: Love it or leave it? A new look at signal fidelity measures. IEEE Signal Processing Magazine 26, 1 (2009), 98117.Google ScholarGoogle ScholarCross RefCross Ref
  189. [189] Wang Zhou, Bovik Alan C., Sheikh Hamid R., and Simoncelli Eero P.. 2004. Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing 13, 4 (2004), 600612.Google ScholarGoogle ScholarDigital LibraryDigital Library
  190. [190] Wang Zhihao, Chen Jian, and Hoi Steven C. H.. 2020. Deep learning for image super-resolution: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 43, 10 (2020), 33653387.Google ScholarGoogle ScholarCross RefCross Ref
  191. [191] Wang Zhendong, Cun Xiaodong, Bao Jianmin, Zhou Wengang, Liu Jianzhuang, and Li Houqiang. 2022. Uformer: A general u-shaped transformer for image restoration. In CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  192. [192] Wang Zhengxue, Gao Guangwei, Li Juncheng, Yu Yi, and Lu Huimin. 2021. Lightweight image super-resolution with multi-scale feature interaction network. In ICME.Google ScholarGoogle ScholarCross RefCross Ref
  193. [193] Wang Zhixin, Zhang Ziying, Zhang Xiaoyun, Zheng Huangjie, Zhou Mingyuan, Zhang Ya, and Wang Yanfeng. 2023. DR2: Diffusion-based robust degradation remover for blind face restoration. In CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  194. [194] Wei Pengxu, Xie Ziwei, Lu Hannan, Zhan Zongyuan, Ye Qixiang, Zuo Wangmeng, and Lin Liang. 2020. Component divide-and-conquer for real-world image super-resolution. In ECCV.Google ScholarGoogle ScholarDigital LibraryDigital Library
  195. [195] Wei Yunxuan, Gu Shuhang, Li Yawei, Timofte Radu, Jin Longcun, and Song Hengjie. 2021. Unsupervised real-world image super resolution via domain-distance aware training. In CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  196. [196] Wolf Valentin, Lugmayr Andreas, Danelljan Martin, Gool Luc Van, and Timofte Radu. 2021. Deflow: Learning complex image degradations from unpaired data with conditional flows. In CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  197. [197] Xia Bin, Hang Yucheng, Tian Yapeng, Yang Wenming, Liao Qingmin, and Zhou Jie. 2022. Efficient non-local contrastive attention for image super-resolution. In AAAI.Google ScholarGoogle ScholarCross RefCross Ref
  198. [198] Xia Bin, Zhang Yulun, Wang Shiyin, Wang Yitong, Wu Xinglong, Tian Yapeng, Yang Wenming, and Gool Luc Van. 2023. DiffIR: Efficient diffusion model for image restoration. In ICCV.Google ScholarGoogle Scholar
  199. [199] Xiang Xiaoyu, Lin Qian, and Allebach Jan P.. 2021. Boosting high-level vision with joint compression artifacts reduction and super-resolution. In ICPR.Google ScholarGoogle ScholarCross RefCross Ref
  200. [200] Xu Yu-Syuan, Tseng Shou-Yao Roy, Tseng Yu, Kuo Hsien-Kai, and Tsai Yi-Min. 2020. Unified dynamic convolutional network for super-resolution with variational degradations. In CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  201. [201] Yang Fuzhi, Yang Huan, Fu Jianlong, Lu Hongtao, and Guo Baining. 2020. Learning texture transformer network for image super-resolution. In CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  202. [202] Yang Jianchao, Wright John, Huang Thomas S., and Ma Yi. 2010. Image super-resolution via sparse representation. IEEE Transactions on Image Processing 19, 11 (2010), 28612873.Google ScholarGoogle ScholarDigital LibraryDigital Library
  203. [203] Yang Wenhan, Feng Jiashi, Yang Jianchao, Zhao Fang, Liu Jiaying, Guo Zongming, and Yan Shuicheng. 2017. Deep edge guided recurrent residual learning for image super-resolution. IEEE Transactions on Image Processing 26, 12 (2017), 58955907.Google ScholarGoogle ScholarDigital LibraryDigital Library
  204. [204] Ye Fangchen, Lin Jin, Huang Hongzhan, Fan Jianping, Shi Zhongchao, Xie Yuan, and Qu Yanyun. 2023. Hardware-friendly scalable image super resolution with progressive structured sparsity. In ACMMM.Google ScholarGoogle ScholarDigital LibraryDigital Library
  205. [205] Ying Xinyi, Wang Yingqian, Wang Longguang, Sheng Weidong, An Wei, and Guo Yulan. 2020. A stereo attention module for stereo image super-resolution. IEEE Signal Processing Letters 27 (2020), 496500. https://ieeexplore.ieee.org/abstract/document/8998204Google ScholarGoogle ScholarCross RefCross Ref
  206. [206] Yoon Youngjin, Jeon Hae-Gon, Yoo Donggeun, Lee Joon-Young, and Kweon In So. 2017. Light-field image super-resolution using convolutional neural network. IEEE Signal Processing Letters 24, 6 (2017), 848852.Google ScholarGoogle ScholarCross RefCross Ref
  207. [207] Yoon Youngjin, Jeon Hae-Gon, Yoo Donggeun, Lee Joon-Young, and Kweon In So. 2015. Learning a deep convolutional network for light-field image super-resolution. In ICCVW.Google ScholarGoogle ScholarDigital LibraryDigital Library
  208. [208] Yu Jiahui, Li Xin, Koh Jing Yu, Zhang Han, Pang Ruoming, Qin James, Ku Alexander, Xu Yuanzhong, Baldridge Jason, and Wu Yonghui. 2021. Vector-quantized image modeling with improved VQGAN. arXiv:2110.04627. Retrieved from https://arxiv.org/abs/2110.04627Google ScholarGoogle Scholar
  209. [209] Yu Xin and Porikli Fatih. 2017. Hallucinating very low-resolution unaligned and noisy face images by transformative discriminative autoencoders. In CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  210. [210] Yuan Yuan, Liu Siyuan, Zhang Jiawei, Zhang Yongbing, Dong Chao, and Lin Liang. 2018. Unsupervised image super-resolution using cycle-in-cycle generative adversarial networks. In CVPRW.Google ScholarGoogle ScholarCross RefCross Ref
  211. [211] Yue Huanjing, Sun Xiaoyan, Yang Jingyu, and Wu Feng. 2013. Landmark image super-resolution by retrieving web images. IEEE Transactions on Image Processing 22, 12 (2013), 48654878.Google ScholarGoogle ScholarDigital LibraryDigital Library
  212. [212] Zamir Syed Waqas, Arora Aditya, Khan Salman, Hayat Munawar, Khan Fahad Shahbaz, and Yang Ming-Hsuan. 2022. Restormer: Efficient transformer for high-resolution image restoration. In CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  213. [213] Zangeneh Erfan, Rahmati Mohammad, and Mohsenzadeh Yalda. 2020. Low resolution face recognition using a two-branch deep convolutional neural network architecture. Expert Systems with Applications 139 (2020), 112854. https://www.sciencedirect.com/science/article/pii/S0957417419305561Google ScholarGoogle ScholarDigital LibraryDigital Library
  214. [214] Zeyde Roman, Elad Michael, and Protter Matan. 2010. On single image scale-up using sparse-representations. In ICCS.Google ScholarGoogle Scholar
  215. [215] Zhang Dongyang, Shao Jie, Li Xinyao, and Shen Heng Tao. 2020. Remote sensing image super-resolution via mixed high-order attention network. IEEE Transactions on Geoscience and Remote Sensing 59, 6 (2020), 51835196.Google ScholarGoogle ScholarCross RefCross Ref
  216. [216] Zhang Kaipeng, Zhang Zhanpeng, Cheng Chia-Wen, Hsu Winston H., Qiao Yu, Liu Wei, and Zhang Tong. 2018. Super-identity convolutional neural network for face hallucination. In ECCV.Google ScholarGoogle ScholarDigital LibraryDigital Library
  217. [217] Zhang Kai, Zuo Wangmeng, and Zhang Lei. 2018. Learning a single convolutional super-resolution network for multiple degradations. In CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  218. [218] Leheng Zhang, Yawei Li, Xingyu Zhou, Xiaorui Zhao, and Shuhang Gu. 2024. Transcending the limit of local window: Advanced super-resolution transformer with adaptive token dictionary. arXiv:2401.08209. Retrieved from https://arxiv.org/abs/2401.08209Google ScholarGoogle Scholar
  219. [219] Zhang Mingjin, Zhang Chi, Zhang Qiming, Guo Jie, Gao Xinbo, and Zhang Jing. 2023. ESSAformer: Efficient transformer for hyperspectral image super-resolution. In CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  220. [220] Zhang Richard, Isola Phillip, Efros Alexei A., Shechtman Eli, and Wang Oliver. 2018. The unreasonable effectiveness of deep features as a perceptual metric. In CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  221. [221] Zhang Wenlong, Liu Yihao, Dong Chao, and Qiao Yu. 2019. RankSRGAN: Generative adversarial networks with ranker for image super-resolution. In ICCV.Google ScholarGoogle ScholarCross RefCross Ref
  222. [222] Zhang Xindong, Zeng Hui, Guo Shi, and Zhang Lei. 2022. Efficient long-range attention network for image super-resolution. In ECCV.Google ScholarGoogle ScholarDigital LibraryDigital Library
  223. [223] Zhang Xindong, Zeng Hui, and Zhang Lei. 2021. Edge-oriented convolution block for real-time super resolution on mobile devices. In ACMMM.Google ScholarGoogle ScholarDigital LibraryDigital Library
  224. [224] Zhang Yiman, Chen Hanting, Chen Xinghao, Deng Yiping, Xu Chunjing, and Wang Yunhe. 2021. Data-free knowledge distillation for image super-resolution. In CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  225. [225] Zhang Yulun, Li Kunpeng, Li Kai, Wang Lichen, Zhong Bineng, and Fu Yun. 2018. Image super-resolution using very deep residual channel attention networks. In ECCV.Google ScholarGoogle ScholarDigital LibraryDigital Library
  226. [226] Zhang Yulun, Li Kunpeng, Li Kai, Wang Lichen, Zhong Bineng, and Fu Yun. 2018. Image super-resolution using very deep residual channel attention networks. In ECCV.Google ScholarGoogle ScholarDigital LibraryDigital Library
  227. [227] Yulun Zhang, Kunpeng Li, Kai Li, Bineng Zhong, and Yun Fu. 2019. Residual non-local attention networks for image restoration. In ICLR.Google ScholarGoogle Scholar
  228. [228] Zhang Yulun, Tian Yapeng, Kong Yu, Zhong Bineng, and Fu Yun. 2018. Residual dense network for image super-resolution. In CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  229. [229] Zhang Yulun, Wei Donglai, Qin Can, Wang Huan, Pfister Hanspeter, and Fu Yun. 2021. Context reasoning attention network for image super-resolution. In ICCV.Google ScholarGoogle ScholarCross RefCross Ref
  230. [230] Zhang Zhifei, Wang Zhaowen, Lin Zhe, and Qi Hairong. 2019. Image super-resolution by neural texture transfer. In CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  231. [231] Zhao Xiaole, Zhang Yulun, Zhang Tao, and Zou Xueming. 2019. Channel splitting network for single MR image super-resolution. IEEE Transactions on Image Processing 28, 11 (2019), 56495662.Google ScholarGoogle ScholarDigital LibraryDigital Library
  232. [232] Zheng Haitian, Ji Mengqi, Wang Haoqian, Liu Yebin, and Fang Lu. 2018. CrossNet: An end-to-end reference-based super resolution network using cross-scale warping. In ECCV.Google ScholarGoogle ScholarDigital LibraryDigital Library
  233. [233] Zhou Erjin, Fan Haoqiang, Cao Zhimin, Jiang Yuning, and Yin Qi. 2015. Learning face hallucination in the wild. In AAAI.Google ScholarGoogle ScholarCross RefCross Ref
  234. [234] Zhou Lin, Cai Haoming, Gu Jinjin, Li Zheyuan, Liu Yingqi, Chen Xiangyu, Qiao Yu, and Dong Chao. 2022. Efficient image super-resolution using vast-receptive-field attention. In ECCV.Google ScholarGoogle Scholar
  235. [235] Zhou Shangchen, Chan Kelvin, Li Chongyi, and Loy Chen Change. 2022. Towards robust blind face restoration with codebook lookup transformer. In NeurIPS.Google ScholarGoogle Scholar
  236. [236] Zhou Yupeng, Li Zhen, Guo Chun-Le, Bai Song, Cheng Ming-Ming, and Hou Qibin. 2023. SRFormer: Permuted self-attention for single image super-resolution. In ICCV.Google ScholarGoogle ScholarCross RefCross Ref
  237. [237] Zhu Feida, Zhu Junwei, Chu Wenqing, Zhang Xinyi, Ji Xiaozhong, Wang Chengjie, and Tai Ying. 2022. Blind face restoration via integrating face shape and generative priors. In CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  238. [238] Zhu Jun-Yan, Park Taesung, Isola Phillip, and Efros Alexei A.. 2017. Unpaired image-to-image translation using cycle-consistent adversarial networks. In ICCV.Google ScholarGoogle ScholarCross RefCross Ref
  239. [239] Zhu Qiang, Li Pengfei, and Li Qianhui. 2023. Attention retractable frequency fusion transformer for image super resolution. In CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  240. [240] Zhu Shizhan, Liu Sifei, Loy Chen Change, and Tang Xiaoou. 2016. Deep cascaded bi-network for face hallucination. In ECCV.Google ScholarGoogle ScholarCross RefCross Ref
  241. [241] Zontak Maria and Irani Michal. 2011. Internal statistics of a single natural image. In CVPR.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. A Systematic Survey of Deep Learning-Based Single-Image Super-Resolution

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Computing Surveys
          ACM Computing Surveys  Volume 56, Issue 10
          October 2024
          325 pages
          ISSN:0360-0300
          EISSN:1557-7341
          DOI:10.1145/3613652
          Issue’s Table of Contents

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 14 May 2024
          • Online AM: 13 April 2024
          • Accepted: 10 April 2024
          • Revised: 3 April 2024
          • Received: 6 May 2023
          Published in csur Volume 56, Issue 10

          Check for updates

          Qualifiers

          • survey
        • Article Metrics

          • Downloads (Last 12 months)584
          • Downloads (Last 6 weeks)584

          Other Metrics

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        Full Text

        View this article in Full Text.

        View Full Text