Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Two common and distinct forms of variation in human functional brain networks

Abstract

The cortex has a characteristic layout with specialized functional areas forming distributed large-scale networks. However, substantial work shows striking variation in this organization across people, which relates to differences in behavior. While most previous work treats individual differences as linked to boundary shifts between the borders of regions, here we show that cortical ‘variants’ also occur at a distance from their typical position, forming ectopic intrusions. Both ‘border’ and ‘ectopic’ variants are common across individuals, but differ in their location, network associations, properties of subgroups of individuals, activations during tasks, and prediction of behavioral phenotypes. Border variants also track significantly more with shared genetics than ectopic variants, suggesting a closer link between ectopic variants and environmental influences. This work argues that these two dissociable forms of variation—border shifts and ectopic intrusions—must be separately accounted for in the analysis of individual differences in cortical systems across people.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Variant definition, splitting and classification as border or ectopic.
Fig. 2: Prevalence of border and ectopic variants across individuals.
Fig. 3: Spatial distributions of ectopic and border variants.
Fig. 4: Network linkages of border and ectopic variants.
Fig. 5: Task-evoked activation of variant locations in the MSC and HCP.
Fig. 6: Estimating the genetic influence of border and ectopic variants across individuals in the HCP dataset.
Fig. 7: Similarity of border and ectopic variants across subgroups of individuals.

Similar content being viewed by others

Data availability

Data from the MSC are publicly available at https://openneuro.org/datasets/ds000224/. Imaging data from the HCP (1200 Subjects Release) can be accessed at https://db.humanconnectome.org/; some data elements utilized in this work (for example, family structure and behavioral measures) require second-tier permissions from the HCP for access. Data associated with the WashU 120 are available at https://openneuro.org/datasets/ds000243/versions/00001/.

Code availability

Code for original network variant definition and primary analyses is available at https://github.com/MidnightScanClub/SeitzmanGratton-2019-PNAS/. Code used to analyze border and ectopic variants is available at https://github.com/GrattonLab/Dworetsky_BorderEctopicVariants/.

References

  1. Churchland, P. S. & Sejnowski, T. J. Perspectives on cognitive neuroscience. Science 242, 741–745 (1988).

    CAS  PubMed  Google Scholar 

  2. Krubitzer, L. A. & Seelke, A. M. Cortical evolution in mammals: the bane and beauty of phenotypic variability. Proc. Natl Acad. Sci. USA 109, 10647–10654 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Kaas, J. H. The evolution of neocortex in primates. Prog. Brain Res. 195, 91–102 (2012).

    PubMed  PubMed Central  Google Scholar 

  4. Anderson, K. M. et al. Heritability of individualized cortical network topography. Proc. Natl Acad. Sci. USA 118, e2016271118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Krubitzer, L. A. & Prescott, T. J. The combinatorial creature: cortical phenotypes within and across lifetimes. Trends Neurosci. 41, 744–762 (2018).

    CAS  PubMed  Google Scholar 

  6. Wig, G. S., Laumann, T. O. & Petersen, S. E. An approach for parcellating human cortical areas using resting-state correlations. Neuroimage 93, 276–291 (2014).

    PubMed  Google Scholar 

  7. Gordon, E. M. et al. Generation and evaluation of a cortical area parcellation from resting-state correlations. Cereb. Cortex 26, 288–303 (2016).

    PubMed  Google Scholar 

  8. Eickhoff, S. B., Yeo, B. T. T. & Genon, S. Imaging-based parcellations of the human brain. Nat. Rev. Neurosci. 19, 672–686 (2018).

    CAS  PubMed  Google Scholar 

  9. Power, J. D. et al. Functional network organization of the human brain. Neuron 72, 665–678 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Yeo, B. T. et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011).

    PubMed  Google Scholar 

  11. Laumann, T. O. et al. Functional system and areal organization of a highly sampled individual human brain. Neuron 87, 657–670 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Gordon, E. M. et al. Precision functional mapping of individual human brains. Neuron 95, 791–807 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Gordon, E. M., Laumann, T. O., Adeyemo, B. & Petersen, S. E. Individual variability of the system-level organization of the human brain. Cereb. Cortex 27, 386–399 (2017).

    PubMed  Google Scholar 

  14. Gordon, E. M. et al. Individual-specific features of brain systems identified with resting state functional correlations. Neuroimage 146, 918–939 (2017).

    PubMed  Google Scholar 

  15. Seitzman, B. A. et al. Trait-like variants in human functional brain networks. Proc. Natl Acad. Sci. USA 116, 22851–22861 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Mueller, S. et al. Individual variability in functional connectivity architecture of the human brain. Neuron 77, 586–595 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Finn, E. S. et al. Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity. Nat. Neurosci. 18, 1664–1671 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Miranda-Dominguez, O. et al. Connectotyping: model based fingerprinting of the functional connectome. PLoS ONE 9, e111048 (2014).

    PubMed  PubMed Central  Google Scholar 

  19. Kong, R. et al. Spatial topography of individual-specific cortical networks predicts human cognition, personality, and emotion. Cereb. Cortex 29, 2533–2551 (2019).

    PubMed  Google Scholar 

  20. Smith, S. M. et al. A positive-negative mode of population covariation links brain connectivity, demographics and behavior. Nat. Neurosci. 18, 1565–1567 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Kraus, B. T. et al. Network variants are similar between task and rest states. Neuroimage 229, 117743 (2021).

    PubMed  Google Scholar 

  22. Dougherty, R. F. et al. Visual field representations and locations of visual areas V1/2/3 in human visual cortex. J. Vis. 3, 586–598 (2003).

    PubMed  Google Scholar 

  23. Frost, M. A. & Goebel, R. Measuring structural-functional correspondence: spatial variability of specialised brain regions after macro-anatomical alignment. Neuroimage 59, 1369–1381 (2012).

    PubMed  Google Scholar 

  24. Kong, R. et al. Individual-specific area l-level parcellations improve functional connectivity prediction of behavior. Cereb. Cortex 31, 4477–4500 (2021).

  25. Cui, Z. et al. Individual variation in functional topography of association networks in youth. Neuron 106, 340–353 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Haxby, J. V. et al. A common, high-dimensional model of the representational space in human ventral temporal cortex. Neuron 72, 404–416 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Gordon, E. M. & Nelson, S. M. Three types of individual variation in brain networks revealed by single-subject functional connectivity analyses. Curr. Opin. Behav. Sci. 40, 79–86 (2021).

    Google Scholar 

  28. Arcaro, M. J., Schade, P. F., Vincent, J. L., Ponce, C. R. & Livingstone, M. S. Seeing faces is necessary for face-domain formation. Nat. Neurosci. 20, 1404–1412 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Striem-Amit, E. et al. Functional connectivity of visual cortex in the blind follows retinotopic organization principles. Brain 138, 1679–1695 (2015).

    PubMed  PubMed Central  Google Scholar 

  30. Dosenbach, N. U. et al. A core system for the implementation of task sets. Neuron 50, 799–812 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Weber, W. W. Chapter 5: Genetics in Pharmacology: Twin Studies. in Pharmacogenetics 107–108 (Oxford University Press, 2008).

  32. Falconer, D. S. Introduction to Quantitative Genetics (Ronald Press Co., 1960).

  33. Ge, T., Holmes, A. J., Buckner, R. L., Smoller, J. W. & Sabuncu, M. R. Heritability analysis with repeat measurements and its application to resting-state functional connectivity. Proc. Natl Acad. Sci. USA 114, 5521–5526 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Marek, S. et al. Reproducible brain-wide association studies require thousands of individuals. Nature 603, 654–660 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Gratton, C., Nelson, S. M. & Gordon, E. M. Brain–behavior correlations: two paths toward reliability. Neuron 110, 1446–1449 (2022).

    CAS  PubMed  Google Scholar 

  36. Bijsterbosch, J. D. et al. The relationship between spatial configuration and functional connectivity of brain regions. Elife 7, e44890 (2018).

    Google Scholar 

  37. Glasser, M. F. et al. A multi-modal parcellation of human cerebral cortex. Nature 536, 171–178 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Verghese, A., Kolbe, S. C., Anderson, A. J., Egan, G. F. & Vidyasagar, T. R. Functional size of human visual area V1: a neural correlate of top-down attention. Neuroimage 93, 47–52 (2014).

    PubMed  Google Scholar 

  39. Schwarzkopf, D. S., Song, C. & Rees, G. The surface area of human V1 predicts the subjective experience of object size. Nat. Neurosci. 14, 28–30 (2011).

    CAS  PubMed  Google Scholar 

  40. Benson, N. C., Kupers, E. R., Barbot, A., Carrasco, M. & Winawer, J. Cortical magnification in human visual cortex parallels task performance around the visual field. Elife 10, e67685 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Juch, H., Zimine, I., Seghier, M. L., Lazeyras, F. & Fasel, J. H. Anatomical variability of the lateral frontal lobe surface: implication for intersubject variability in language neuroimaging. Neuroimage 24, 504–514 (2005).

    PubMed  Google Scholar 

  42. Fedorenko, E. & Blank, I. A. Broca’s area is not a natural kind. Trends Cogn. Sci. 24, 270–284 (2020).

    PubMed  PubMed Central  Google Scholar 

  43. Gratton, C. et al. Defining individual-specific functional neuroanatomy for precision psychiatry. Biol. Psychiatry 88, 28–39 (2020).

    PubMed  Google Scholar 

  44. O’Leary, D. D., Chou, S. J. & Sahara, S. Area patterning of the mammalian cortex. Neuron 56, 252–269 (2007).

    PubMed  Google Scholar 

  45. Cadwell, C. R., Bhaduri, A., Mostajo-Radji, M. A., Keefe, M. G. & Nowakowski, T. J. Development and arealization of the cerebral cortex. Neuron 103, 980–1004 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. DiNicola, L. M. & Buckner, R. L. Precision estimates of parallel distributed association networks: evidence for domain specialization and implications for evolution and development. Curr. Opin. Behav. Sci. 40, 120–129 (2021).

    PubMed  PubMed Central  Google Scholar 

  47. Adhikari, B. M. et al. Comparison of heritability estimates on resting state fMRI connectivity phenotypes using the ENIGMA analysis pipeline. Hum. Brain Mapp. 39, 4893–4902 (2018).

    PubMed  PubMed Central  Google Scholar 

  48. Colclough, G. L. et al. The heritability of multi-modal connectivity in human brain activity. Elife 6, e20178 (2017).

    PubMed  PubMed Central  Google Scholar 

  49. Elliott, M. L. et al. General functional connectivity: shared features of resting-state and task fMRI drive reliable and heritable individual differences in functional brain networks. Neuroimage 189, 516–532 (2019).

    PubMed  Google Scholar 

  50. Fornito, A. et al. Genetic influences on cost-efficient organization of human cortical functional networks. J. Neurosci. 31, 3261–3270 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Fu, Y. et al. Genetic influences on resting-state functional networks: a twin study. Hum. Brain Mapp. 36, 3959–3972 (2015).

    PubMed  PubMed Central  Google Scholar 

  52. Glahn, D. C. et al. Genetic control over the resting brain. Proc. Natl Acad. Sci. USA 107, 1223–1228 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Hahamy, A. et al. Representation of multiple body parts in the missing-hand territory of congenital one-handers. Curr. Biol. 27, 1350–1355 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Misic, B. et al. Cooperative and competitive spreading dynamics on the human connectome. Neuron 86, 1518–1529 (2015).

    CAS  PubMed  Google Scholar 

  55. Fedorenko, E. The early origins and the growing popularity of the individual-subject analytic approach in human neuroscience. Curr. Opin. Behav. Sci. 40, 105–112 (2021).

    Google Scholar 

  56. Nieto-Castanon, A. & Fedorenko, E. Subject-specific functional localizers increase sensitivity and functional resolution of multi-subject analyses. Neuroimage 63, 1646–1669 (2012).

    PubMed  Google Scholar 

  57. Porter, A. et al. Masked features of task states found in individual brain networks. Cereb. Cortex 33, 2879–2900 (2023).

  58. Haxby, J. V., Guntupalli, J. S., Nastase, S. A. & Feilong, M. Hyperalignment: modeling shared information encoded in idiosyncratic cortical topographies. Elife 9, e56601 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Guntupalli, J. S., Feilong, M. & Haxby, J. V. A computational model of shared fine-scale structure in the human connectome. PLoS Comput. Biol. 14, e1006120 (2018).

    PubMed  PubMed Central  Google Scholar 

  60. Brennan, B. P. et al. Use of an individual-level approach to identify cortical connectivity biomarkers in obsessive-compulsive disorder. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 4, 27–38 (2019).

    PubMed  Google Scholar 

  61. Fan, Y. S, et al. Individual-specific functional connectome biomarkers predict schizophrenia positive symptoms during adolescent brain maturation. Hum. Brain Mapp. 42, 1475–1484 (2020).

  62. Klein, A. et al. Evaluation of volume-based and surface-based brain image registration methods. Neuroimage 51, 214–220 (2010).

    PubMed  Google Scholar 

  63. Fischl, B. FreeSurfer. Neuroimage 62, 774–781 (2012).

    PubMed  Google Scholar 

  64. Van Essen, D. C., Glasser, M. F., Dierker, D. L., Harwell, J. & Coalson, T. Parcellations and hemispheric asymmetries of human cerebral cortex analyzed on surface-based atlases. Cereb. Cortex 22, 2241–2262 (2012).

    PubMed  Google Scholar 

  65. Tahmasebi, A. M. et al. Is the link between anatomical structure and function equally strong at all cognitive levels of processing? Cereb. Cortex 22, 1593–1603 (2012).

    PubMed  Google Scholar 

  66. Kanwisher, N., McDermott, J. & Chun, M. M. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J. Neurosci. 17, 4302–4311 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Saxe, R., Brett, M. & Kanwisher, N. Divide and conquer: a defense of functional localizers. Neuroimage 30, 1088–1096 (2006).

    PubMed  Google Scholar 

  68. Fedorenko, E., Duncan, J. & Kanwisher, N. Broad domain generality in focal regions of frontal and parietal cortex. Proc. Natl Acad. Sci. USA 110, 16616–16621 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Braga, R. M. & Buckner, R. L. Parallel interdigitated distributed networks within the individual estimated by intrinsic functional connectivity. Neuron 95, 457–471 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Dworetsky, A. et al. Probabilistic mapping of human functional brain networks identifies regions of high group consensus. Neuroimage 237, 118164 (2021).

    PubMed  Google Scholar 

  71. Miller, J. A., D’Esposito, M. & Weiner, K. S. Using tertiary sulci to map the “cognitive globe” of prefrontal cortex. J. Cogn. Neurosci. 33, 1698–1715 (2021).

    PubMed  Google Scholar 

  72. Weiner, K. S. The mid-fusiform sulcus (sulcus sagittalis gyri fusiformis). Anat. Rec. 302, 1491–1503 (2019).

    Google Scholar 

  73. Gratton, C., Sun, H. & Petersen, S. E. Control networks and hubs. Psychophysiology 55, e13032 (2018).

    Google Scholar 

  74. Duncan, J. & Owen, A. M. Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends Neurosci. 23, 475–483 (2000).

    CAS  PubMed  Google Scholar 

  75. Fedorenko, E., Duncan, J. & Kanwisher, N. Language-selective and domain-general regions lie side by side within Broca’s area. Curr. Biol. 22, 2059–2062 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Noyce, A. L., Cestero, N., Michalka, S. W., Shinn-Cunningham, B. G. & Somers, D. C. Sensory-biased and multiple-demand processing in human lateral frontal cortex. J. Neurosci. 37, 8755–8766 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Assem, M., Glasser, M. F., Van Essen, D. C. & Duncan, J. A domain-general cognitive core defined in multimodally parcellated human cortex. Cereb. Cortex 30, 4361–4380 (2020).

    PubMed  PubMed Central  Google Scholar 

  78. Smith, D. M., Perez, D. C., Porter, A., Dworetsky, A. & Gratton, C. Light through the fog: using precision fMRI data to disentangle the neural substrates of cognitive control. Curr. Opin. Behav. Sci. 40, 19–26 (2021).

    PubMed  PubMed Central  Google Scholar 

  79. Corbetta, M. & Shulman, G. L. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3, 201–215 (2002).

    CAS  PubMed  Google Scholar 

  80. DiNicola, L. M., Braga, R. M. & Buckner, R. L. Parallel distributed networks dissociate episodic and social functions within the individual. J. Neurophysiol. 123, 1144–1179 (2020).

    PubMed  PubMed Central  Google Scholar 

  81. Saxe, R. & Kanwisher, N. People thinking about thinking people. The role of the temporo-parietal junction in “theory of mind”. Neuroimage 19, 1835–1842 (2003).

    CAS  PubMed  Google Scholar 

  82. Saxe, R. Uniquely human social cognition. Curr. Opin. Neurobiol. 16, 235–239 (2006).

    CAS  PubMed  Google Scholar 

  83. Gratton, C. et al. Functional brain networks are dominated by stable group and individual factors, not cognitive or daily variation. Neuron 98, 439–452 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Krienen, F. M., Yeo, B. T. & Buckner, R. L. Reconfigurable task-dependent functional coupling modes cluster around a core functional architecture. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 20130526 (2014).

    PubMed  PubMed Central  Google Scholar 

  85. Cole, M. W., Bassett, D. S., Power, J. D., Braver, T. S. & Petersen, S. E. Intrinsic and task-evoked network architectures of the human brain. Neuron 83, 238–251 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Yin, D. & Kaiser, M. Understanding neural flexibility from a multifaceted definition. Neuroimage 235, 118027 (2021).

    PubMed  Google Scholar 

  87. Gonzalez-Castillo, J. et al. Tracking ongoing cognition in individuals using brief, whole-brain functional connectivity patterns. Proc. Natl Acad. Sci. USA 112, 8762–8767 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Shirer, W. R., Ryali, S., Rykhlevskaia, E., Menon, V. & Greicius, M. D. Decoding subject-driven cognitive states with whole-brain connectivity patterns. Cereb. Cortex 22, 158–165 (2012).

    CAS  PubMed  Google Scholar 

  89. Satterthwaite, T. D. et al. Functional maturation of the executive system during adolescence. J. Neurosci. 33, 16249–16261 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Marek, S. et al. Identifying reproducible individual differences in childhood functional brain networks: an ABCD study. Dev. Cogn. Neurosci. 40, 100706 (2019).

    PubMed  PubMed Central  Google Scholar 

  91. Kong, R. et al. Comparison between gradients and parcellations for functional connectivity prediction of behavior. Neuroimage 273, 120044 (2023).

    PubMed  Google Scholar 

  92. Tervo-Clemmens, B. et al. Reply to: multivariate BWAS can be replicable with moderate sample sizes. Nature 615, E8–E12 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Schlaggar, B. L. et al. Functional neuroanatomical differences between adults and school-age children in the processing of single words. Science 296, 1476–1479 (2002).

    CAS  PubMed  Google Scholar 

  94. Van Essen, D. C. et al. The Human Connectome Project: a data acquisition perspective. Neuroimage 62, 2222–2231 (2012).

    PubMed  Google Scholar 

  95. Miezin, F. M., Maccotta, L., Ollinger, J. M., Petersen, S. E. & Buckner, R. L. Characterizing the hemodynamic response: effects of presentation rate, sampling procedure, and the possibility of ordering brain activity based on relative timing. Neuroimage 11, 735–759 (2000).

    CAS  PubMed  Google Scholar 

  96. Glasser, M. F. et al. The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage 80, 105–124 (2013).

    PubMed  Google Scholar 

  97. Talairach, J. & Tournoux, P. Co-planar Stereotaxic Atlas of The Human Brain: 3-Dimensional Proportional System: an Approach to Cerebral Imaging (Georg Thieme, 1988).

  98. Friston, K. J., Williams, S., Howard, R., Frackowiak, R. S. & Turner, R. Movement-related effects in fMRI time-series. Magn. Reson. Med. 35, 346–355 (1996).

    CAS  PubMed  Google Scholar 

  99. Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L. & Petersen, S. E. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59, 2142–2154 (2012).

    PubMed  Google Scholar 

  100. Fair, D. A. et al. Correction of respiratory artifacts in MRI head motion estimates. Neuroimage 208, 116400 (2020).

    PubMed  Google Scholar 

  101. Power, J. D. et al. Methods to detect, characterize, and remove motion artifact in resting state fMRI. Neuroimage 84, 320–341 (2014).

    PubMed  Google Scholar 

  102. Dale, A. M., Fischl, B. & Sereno, M. I. Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9, 179–194 (1999).

    CAS  PubMed  Google Scholar 

  103. Van Essen, D. C. A Population-Average, Landmark- and Surface-based (PALS) atlas of human cerebral cortex. Neuroimage 28, 635–662 (2005).

    PubMed  Google Scholar 

  104. Braga, R. M., DiNicola, L. M., Becker, H. C. & Buckner, R. L. Situating the left-lateralized language network in the broader organization of multiple specialized large-scale distributed networks. J. Neurophysiol. 124, 1415–1448 (2020).

    PubMed  PubMed Central  Google Scholar 

  105. Rosvall, M. & Bergstrom, C. T. Maps of random walks on complex networks reveal community structure. Proc. Natl Acad. Sci. USA 105, 1118–1123 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Markello, R. D. & Misic, B. Comparing spatial null models for brain maps. Neuroimage 236, 118052 (2021).

    PubMed  Google Scholar 

  107. Glass, L. Moire effect from random dots. Nature 223, 578–580 (1969).

    CAS  PubMed  Google Scholar 

  108. Barch, D. M. et al. Function in the human connectome: task-fMRI and individual differences in behavior. Neuroimage 80, 169–189 (2013).

    PubMed  Google Scholar 

  109. Fortunato, S. Community detection in graphs. Phys. Rep. 486, 75–174 (2010).

    Google Scholar 

  110. Siegel, J. S. et al. Data quality influences observed links between functional connectivity and behavior. Cereb. Cortex 27, 4492–4502 (2017).

    PubMed  Google Scholar 

Download references

Acknowledgements

Funding was provided by National Institutes of Health (NIH) grant R01MH118370 (to C.G.), the James S. McDonnell Foundation (to S.E.P.), NIH grant R01MH111640 (to M.N.), NIH grant T32MH100019 (to A.N.N.), the Therapeutic Cognitive Neuroscience Fund (to D.M.S.) and NIH grant K01AA030083 (to A.S.H.).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: C.G., S.E.P., B.A.S. and A.D.; methodology, formal analysis and visualization: A.D., C.G., A.N.N., B.A.S., D.M.S., A.S.H. and T.E.N.; writing: A.D. and C.G.; review and editing: B.A.S., M.N., S.E.P., B.A., A.N.N., A.S.H., T.E.N., D.M.S., A.D. and C.G.; supervision and funding: C.G., S.E.P., M.N., A.N.N., D.M.S. and A.S.H.

Corresponding author

Correspondence to Caterina Gratton.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Neuroscience thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Results, Figs. 1–22 and Tables 1–3.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dworetsky, A., Seitzman, B.A., Adeyemo, B. et al. Two common and distinct forms of variation in human functional brain networks. Nat Neurosci 27, 1187–1198 (2024). https://doi.org/10.1038/s41593-024-01618-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-024-01618-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing