skip to main content
survey
Free Access
Just Accepted

NLOS Identification and Mitigation for Time-based Indoor Localization Systems: Survey and Future Research Directions

Online AM:07 May 2024Publication History
Skip Abstract Section

Abstract

One hurdle to accurate indoor localization using time-based networks is the presence of Non-Line-Of-Sight (NLOS) and multipath signals, affecting the accuracy of ranging in indoor environments. NLOS identification and mitigation have been studied over the years and applied to different time-based networks, with most works considering NLOS links with WiFi and UWB channels. In this paper, we discuss the effects and challenges of NLOS conditions on indoor localization and present current state-of-the-art approaches to NLOS identification and mitigation in literature. We survey these approaches and classify them under different categories together with their merits and demerits. We further categorize approaches to tackle NLOS effects into single and hybrid measurement-based approaches in this work. Lessons learnt from the survey with future directions are also presented in this paper.

References

  1. 2018. SALMA: UWB-based single-anchor localization system using multipath assistance, author=Großwindhager, Bernhard and Rath, Michael and Kulmer, Josef and Bakr, Mustafa S and Boano, Carlo Alberto and Witrisal, Klaus and Römer, Kay. In Proceedings of the 16th ACM Conference on Embedded Networked Sensor Systems. 132–144.Google ScholarGoogle Scholar
  2. KM Al-Qahtani, Abdullah S Al-Ahmari, Ali H Muqaibel, Mohamed Adnan Landolsi, and UM Johar. 2014. Improved residual weighting for NLOS mitigation in TDOA-based UWB positioning systems. In 2014 21st International Conference on Telecommunications (ICT). IEEE, 211–215.Google ScholarGoogle ScholarCross RefCross Ref
  3. Grigorios G Anagnostopoulos and Alexandros Kalousis. 2019. A reproducible analysis of RSSI fingerprinting for outdoor localization using sigfox: Preprocessing and hyperparameter tuning. In 2019 International Conference on Indoor Positioning and Indoor Navigation (IPIN). IEEE, 1–8.Google ScholarGoogle ScholarCross RefCross Ref
  4. Simone Angarano, Vittorio Mazzia, Francesco Salvetti, Giovanni Fantin, and Marcello Chiaberge. 2021. Robust ultra-wideband range error mitigation with deep learning at the edge. Engineering Applications of Artificial Intelligence 102 (2021), 104278.Google ScholarGoogle ScholarCross RefCross Ref
  5. Luca Barbieri, Mattia Brambilla, Andrea Trabattoni, Stefano Mervic, and Monica Nicoli. 2021. UWB localization in a smart factory: Augmentation methods and experimental assessment. IEEE Transactions on Instrumentation and Measurement 70 (2021), 1–18.Google ScholarGoogle Scholar
  6. Valentín Barral, Carlos J Escudero, José A García-Naya, and Roberto Maneiro-Catoira. 2019. NLOS identification and mitigation using low-cost UWB devices. Sensors 19, 16 (2019), 3464.Google ScholarGoogle ScholarCross RefCross Ref
  7. Valentín Barral, Carlos J Escudero, José A García-Naya, and Pedro Suárez-Casal. 2019. Environmental cross-validation of NLOS machine learning classification/mitigation with low-cost UWB positioning systems. Sensors 19, 24 (2019), 5438.Google ScholarGoogle ScholarCross RefCross Ref
  8. Alan Bensky. 2016. Wireless positioning technologies and applications. Artech House.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Andrea Bombino, Simone Grimaldi, Aamir Mahmood, and Mikael Gidlund. 2020. Machine learning-aided classification of los/NLos radio links in industrial IoT. In 2020 16th IEEE International Conference on Factory Communication Systems (WFCS). IEEE, 1–8.Google ScholarGoogle ScholarCross RefCross Ref
  10. Leana Bouse, Scott A King, and Tianxing Chu. 2024. Simplified Indoor Localization Using Bluetooth Beacons and Received Signal Strength Fingerprinting with Smartwatch. Sensors 24, 7 (2024), 2088.Google ScholarGoogle ScholarCross RefCross Ref
  11. Klemen Bregar and Mihael Mohorčič. 2018. Improving indoor localization using convolutional neural networks on computationally restricted devices. IEEE Access 6(2018), 17429–17441.Google ScholarGoogle ScholarCross RefCross Ref
  12. Zhengguo Cai, Xuguang Yang, and Xukang Wu. 2016. Tetrahedron-constraint least square localization algorithm in mixed LOS/NLOS scenario based on TDOA measurements. In 2016 International Symposium on Computer, Consumer and Control (IS3C). IEEE, 251–255.Google ScholarGoogle ScholarCross RefCross Ref
  13. Bo Cao, Chunxia Jiang, Sumei Fan, Hua Zhang, and Wanli Liu. 2024. Improving the Localization Accuracy and Robustness of a UWB System Using VB-CSRUKF and RTS in Harsh Underground NLOS Environments. IEEE Internet of Things Journal(2024).Google ScholarGoogle ScholarCross RefCross Ref
  14. Bo Cao, Shibo Wang, Shirong Ge, and Wanli Liu. 2020. Improving positioning accuracy of UWB in complicated underground NLOS scenario using calibration, VBUKF, and WCA. IEEE Transactions on Instrumentation and Measurement 70 (2020), 1–13.Google ScholarGoogle Scholar
  15. Hongji Cao, Yunjia Wang, Jingxue Bi, Shenglei Xu, Hongxia Qi, Minghao Si, and Guobiao Yao. 2020. WiFi RTT Indoor Positioning Method Based on Gaussian Process Regression for Harsh Environments. IEEE Access 8(2020), 215777–215786.Google ScholarGoogle ScholarCross RefCross Ref
  16. Hongji Cao, Yunjia Wang, Jingxue Bi, Shenglei Xu, Minghao Si, and Hongxia Qi. 2020. Indoor positioning method using WiFi RTT based on LOS identification and range calibration. ISPRS International Journal of Geo-Information 9, 11(2020), 627.Google ScholarGoogle ScholarCross RefCross Ref
  17. Fabrizio Carpi, Luca Davoli, Marco Martalò, Antonio Cilfone, Yingjie Yu, Yi Wang, and Gianluigi Ferrari. 2019. RSSI-based methods for LOS/NLOS channel identification in indoor scenarios. In 2019 16th International Symposium on Wireless Communication Systems (ISWCS). IEEE, 171–175.Google ScholarGoogle ScholarCross RefCross Ref
  18. Tiantian Chang, Suying Jiang, Yuzhe Sun, Ailin Jia, and Wei Wang. 2021. Multi-bandwidth nlos identification based on deep learning method. In 2021 15th European Conference on Antennas and Propagation (EuCAP). IEEE, 1–5.Google ScholarGoogle ScholarCross RefCross Ref
  19. Haotian Chen, Gang Wang, and Nirwan Ansari. 2019. Improved robust TOA-based localization via NLOS balancing parameter estimation. IEEE Transactions on Vehicular Technology 68, 6 (2019), 6177–6181.Google ScholarGoogle ScholarCross RefCross Ref
  20. Hongyang Chen, Gang Wang, Zizhuo Wang, Hing-Cheung So, and H Vincent Poor. 2011. Non-line-of-sight node localization based on semi-definite programming in wireless sensor networks. IEEE Transactions on Wireless Communications 11, 1(2011), 108–116.Google ScholarGoogle ScholarCross RefCross Ref
  21. Pi-Chun Chen. 1999. A non-line-of-sight error mitigation algorithm in location estimation. In WCNC. 1999 IEEE Wireless Communications and Networking Conference (Cat. No. 99TH8466), Vol.  1. IEEE, 316–320.Google ScholarGoogle ScholarCross RefCross Ref
  22. Yijie Chen, Jiliang Wang, and Jing Yang. 2024. Exploiting Anchor Links for NLOS Combating in UWB Localization. ACM Transactions on Sensor Networks(2024).Google ScholarGoogle Scholar
  23. Yu-Yao Chen, Shih-Ping Huang, Ting-Wei Wu, Wei-Ting Tsai, Chong-Yi Liou, and Shau-Gang Mao. 2020. UWB system for indoor positioning and tracking with arbitrary target orientation, optimal anchor location, and adaptive NLOS mitigation. IEEE Transactions on Vehicular Technology 69, 9 (2020), 9304–9314.Google ScholarGoogle Scholar
  24. Jeong-Sik Choi, Woong-Hee Lee, Jae-Hyun Lee, Jong-Ho Lee, and Seong-Cheol Kim. 2017. Deep learning based NLOS identification with commodity WLAN devices. IEEE Transactions on Vehicular Technology 67, 4 (2017), 3295–3303.Google ScholarGoogle ScholarCross RefCross Ref
  25. Zhichao Cui, Yufang Gao, Jing Hu, Shiwei Tian, and Jian Cheng. 2020. LOS/NLOS identification for indoor UWB positioning based on Morlet wavelet transform and convolutional neural networks. IEEE Communications Letters 25, 3 (2020), 879–882.Google ScholarGoogle ScholarCross RefCross Ref
  26. Krzysztof K Cwalina, Piotr Rajchowski, Olga Blaszkiewicz, Alicja Olejniczak, and Jaroslaw Sadowski. 2019. Deep learning-based LOS and NLOS identification in wireless body area networks. Sensors 19, 19 (2019), 4229.Google ScholarGoogle ScholarCross RefCross Ref
  27. José A del Peral-Rosado, Ronald Raulefs, José A López-Salcedo, and Gonzalo Seco-Granados. 2017. Survey of cellular mobile radio localization methods: From 1G to 5G. IEEE Communications Surveys & Tutorials 20, 2 (2017), 1124–1148.Google ScholarGoogle ScholarCross RefCross Ref
  28. Vitomir Djaja-Josko and Marcin Kolakowski. 2017. A new map based method for NLOS mitigation in the UWB indoor localization system. In 2017 25th Telecommunication Forum (TELFOR). IEEE, 1–4.Google ScholarGoogle Scholar
  29. Mengyao Dong, Yihong Qi, Xianbin Wang, and Yiming Liu. 2022. A Non-Line-of-Sight Mitigation Method for Indoor Ultra-Wideband Localization With Multiple Walls. IEEE Transactions on Industrial Informatics(2022).Google ScholarGoogle Scholar
  30. Yinhuan Dong, Tughrul Arslan, and Yunjie Yang. 2021. Real-Time NLOS/LOS Identification for Smartphone-Based Indoor Positioning Systems Using WiFi RTT and RSS. IEEE Sensors Journal 22, 6 (2021), 5199–5209.Google ScholarGoogle ScholarCross RefCross Ref
  31. Nathan Dwek, Merwan Birem, Kurt Geebelen, Erik Hostens, Anurodh Mishra, Jan Steckel, and Risang Yudanto. 2019. Improving the accuracy and robustness of ultra-wideband localization through sensor fusion and outlier detection. IEEE Robotics and Automation Letters 5, 1 (2019), 32–39.Google ScholarGoogle ScholarCross RefCross Ref
  32. Jiancun Fan and Ahsan Saleem Awan. 2019. Non-line-of-sight identification based on unsupervised machine learning in ultra wideband systems. IEEE Access 7(2019), 32464–32471.Google ScholarGoogle ScholarCross RefCross Ref
  33. Xu Feng, Khuong An Nguyen, and Zhiyuan Luo. 2022. WiFi Access Points Line-of-Sight Detection for Indoor Positioning Using the Signal Round Trip Time. Remote Sensing 14, 23 (2022), 6052.Google ScholarGoogle ScholarCross RefCross Ref
  34. André G Ferreira, Duarte Fernandes, Sérgio Branco, André Paulo Catarino, and João L Monteiro. 2021. Feature selection for real-time NLOS identification and mitigation for body-mounted UWB transceivers. IEEE Transactions on Instrumentation and Measurement 70 (2021), 1–10.Google ScholarGoogle ScholarCross RefCross Ref
  35. Jaron Fontaine, Fuhu Che, Adnan Shahid, Ben Van Herbruggen, Qasim Zeeshan Ahmed, Waqas Bin Abbas, and Eli De Poorter. 2023. Transfer Learning for UWB error correction and (N) LOS classification in multiple environments. IEEE Internet of Things Journal(2023).Google ScholarGoogle Scholar
  36. Jaron Fontaine, Matteo Ridolfi, Ben Van Herbruggen, Adnan Shahid, and Eli De Poorter. 2020. Edge inference for UWB ranging error correction using autoencoders. IEEE access 8(2020), 139143–139155.Google ScholarGoogle ScholarCross RefCross Ref
  37. Abdo Gaber and Abbas Omar. 2016. Utilization of multiple-antenna multicarrier systems and NLOS mitigation for accurate wireless indoor positioning. IEEE transactions on wireless communications 15, 10(2016), 6570–6584.Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Shangchao Gao, Fan Zhang, and Gang Wang. 2017. NLOS error mitigation for TOA-based source localization with unknown transmission time. IEEE Sensors Journal 17, 12 (2017), 3605–3606.Google ScholarGoogle ScholarCross RefCross Ref
  39. Chunhua Geng, Xin Yuan, and Howard Huang. 2019. Exploiting channel correlations for NLOS ToA localization with multivariate Gaussian mixture models. IEEE Wireless Communications Letters 9, 1 (2019), 70–73.Google ScholarGoogle ScholarCross RefCross Ref
  40. Christian Gentner, Thomas Jost, Wei Wang, Siwei Zhang, Armin Dammann, and Uwe-Carsten Fiebig. 2016. Multipath assisted positioning with simultaneous localization and mapping. IEEE Transactions on Wireless Communications 15, 9(2016), 6104–6117.Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Christian Gentner, Markus Ulmschneider, Isabel Kuehner, and Armin Dammann. 2020. Wifi-rtt indoor positioning. In 2020 IEEE/ION Position, Location and Navigation Symposium (PLANS). IEEE, 1029–1035.Google ScholarGoogle Scholar
  42. Sinan Gezici, Zhi Tian, Georgios B Giannakis, Hisashi Kobayashi, Andreas F Molisch, H Vincent Poor, and Zafer Sahinoglu. 2005. Localization via ultra-wideband radios: a look at positioning aspects for future sensor networks. IEEE signal processing magazine 22, 4 (2005), 70–84.Google ScholarGoogle Scholar
  43. Davide Giovanelli, Elisabetta Farella, Daniele Fontanelli, and David Macii. 2018. Bluetooth-based indoor positioning through ToF and RSSI data fusion. In 2018 International Conference on Indoor Positioning and Indoor Navigation (IPIN). IEEE, 1–8.Google ScholarGoogle ScholarCross RefCross Ref
  44. Yanying Gu, Anthony Lo, and Ignas Niemegeers. 2009. A survey of indoor positioning systems for wireless personal networks. IEEE Communications surveys & tutorials 11, 1 (2009), 13–32.Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. André Günther and Christian Hoene. 2005. Measuring round trip times to determine the distance between WLAN nodes. In International conference on research in networking. Springer, 768–779.Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Xiansheng Guo, Nirwan Ansari, Fangzi Hu, Yuan Shao, Nkrow Raphael Elikplim, and Lin Li. 2019. A survey on fusion-based indoor positioning. IEEE Communications Surveys & Tutorials 22, 1 (2019), 566–594.Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Xiansheng Guo, Nirwan Ansari, Lin Li, and Linfu Duan. 2020. A hybrid positioning system for location-based services: Design and implementation. IEEE Communications Magazine 58, 5 (2020), 90–96.Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Xiansheng Guo, Nkrow Raphael Elikplim, Nirwan Ansari, Lin Li, and Lei Wang. 2019. Robust WiFi localization by fusing derivative fingerprints of RSS and multiple classifiers. IEEE Transactions on Industrial Informatics 16, 5 (2019), 3177–3186.Google ScholarGoogle ScholarCross RefCross Ref
  49. Karthikeyan Gururaj, Anojh Kumaran Rajendra, Yang Song, Choi Look Law, and Guofa Cai. 2017. Real-time identification of NLOS range measurements for enhanced UWB localization. In 2017 international conference on indoor positioning and indoor navigation (IPIN). IEEE, 1–7.Google ScholarGoogle ScholarCross RefCross Ref
  50. Ismail Guvenc and Chia-Chin Chong. 2009. A survey on TOA based wireless localization and NLOS mitigation techniques. IEEE Communications Surveys & Tutorials 11, 3 (2009), 107–124.Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Kyuwon Han, Seung Min Yu, and Seong-Lyun Kim. 2019. Smartphone-based indoor localization using Wi-Fi fine timing measurement. In 2019 International Conference on Indoor Positioning and Indoor Navigation (IPIN). IEEE, 1–5.Google ScholarGoogle ScholarCross RefCross Ref
  52. Gerhard P Hancke and Bruno Jorge Silva. 2021. Wireless Positioning in Underground Mines: Challenges and Recent Advances. IEEE Industrial Electronics Magazine(2021).Google ScholarGoogle Scholar
  53. Omar Hashem, Khaled A Harras, and Moustafa Youssef. 2020. Deepnar: Robust time-based sub-meter indoor localization using deep learning. In 2020 17th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON). IEEE, 1–9.Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Omar Hashem, Moustafa Youssef, and Khaled A Harras. 2020. WiNar: Rtt-based sub-meter indoor localization using commercial devices. In 2020 IEEE International Conference on Pervasive Computing and Communications (PerCom). IEEE, 1–10.Google ScholarGoogle ScholarCross RefCross Ref
  55. Mohammad Heidari and Kaveh Pahlavan. 2008. Identification of the absence of direct path in toa-based indoor localization systems. International Journal of Wireless Information Networks 15, 3 (2008), 117–127.Google ScholarGoogle ScholarCross RefCross Ref
  56. Berthold KP Horn. 2020. Doubling the Accuracy of Indoor Positioning: Frequency Diversity. Sensors 20, 5 (2020), 1489.Google ScholarGoogle ScholarCross RefCross Ref
  57. Chen Huang, Andreas F Molisch, Ruisi He, Rui Wang, Pan Tang, Bo Ai, and Zhangdui Zhong. 2020. Machine learning-enabled LOS/NLOS identification for MIMO systems in dynamic environments. IEEE Transactions on Wireless Communications 19, 6(2020), 3643–3657.Google ScholarGoogle ScholarCross RefCross Ref
  58. Jose M Huerta, Josep Vidal, Audrey Giremus, and Jean-Yves Tourneret. 2009. Joint particle filter and UKF position tracking in severe non-line-of-sight situations. IEEE Journal of Selected Topics in Signal Processing 3, 5 (2009), 874–888.Google ScholarGoogle ScholarCross RefCross Ref
  59. Sami Huilla, Chrysanthos Pepi, Michalis Antoniou, Christos Laoudias, Seppo Horsmanheimo, Sergio Lembo, Matti Laukkanen, and Georgios Ellinas. 2020. Indoor Localization with Wi-Fi Fine Timing Measurements Through Range Filtering and Fingerprinting Methods. In 2020 IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications. IEEE, 1–7.Google ScholarGoogle Scholar
  60. Mohamed Ibrahim, Hansi Liu, Minitha Jawahar, Viet Nguyen, Marco Gruteser, Richard Howard, Bo Yu, and Fan Bai. 2018. Verification: Accuracy evaluation of WiFi fine time measurements on an open platform. In Proceedings of the 24th Annual International Conference on Mobile Computing and Networking. 417–427.Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. IEEE. 2021. IEEE Standard for Information Technology–Telecommunications and Information Exchange between Systems Local and Metropolitan Area Networks–Specific Requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 1: Enhancements for High-Efficiency WLAN. IEEE Std 802.11ax-2021 (Amendment to IEEE Std 802.11-2020) (2021), 1–767. https://doi.org/10.1109/IEEESTD.2021.9442429Google ScholarGoogle ScholarCross RefCross Ref
  62. Khondoker Ziaul Islam, David Murray, Dean Diepeveen, Michael GK Jones, and Ferdous Sohel. 2024. LoRa-based outdoor localization and tracking using unsupervised symbolization. Internet of Things 25(2024), 101016.Google ScholarGoogle ScholarCross RefCross Ref
  63. Changhui Jiang, Jichun Shen, Shuai Chen, Yuwei Chen, Di Liu, and Yuming Bo. 2020. UWB NLOS/LOS classification using deep learning method. IEEE Communications Letters 24, 10 (2020), 2226–2230.Google ScholarGoogle ScholarCross RefCross Ref
  64. Di Jin, Feng Yin, Abdelhak M Zoubir, and Hing Cheung So. 2021. Exploiting sparsity of ranging biases for NLOS mitigation. IEEE Transactions on Signal Processing 69 (2021), 3782–3795.Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. Hyeon Jeong Jo and Seungku Kim. 2018. Indoor smartphone localization based on LOS and NLOS identification. Sensors 18, 11 (2018), 3987.Google ScholarGoogle ScholarCross RefCross Ref
  66. J Joung, S Jung, S Chung, and E-R Jeong. 2019. CNN-based Tx–Rx distance estimation for UWB system localisation. Electronics Letters 55, 17 (2019), 938–940.Google ScholarGoogle ScholarCross RefCross Ref
  67. Mayur Katwe, Pradnya Ghare, and Prabhat Kumar Sharma. 2020. Robust NLOS bias mitigation for hybrid RSS-TOA based source localization under unknown transmission parameters. IEEE Wireless Communications Letters 10, 3 (2020), 542–546.Google ScholarGoogle ScholarCross RefCross Ref
  68. Jasurbek Khodjaev, Yongwan Park, and Aamir Saeed Malik. 2010. Survey of NLOS identification and error mitigation problems in UWB-based positioning algorithms for dense environments. annals of telecommunications-annales des télécommunications 65, 5(2010), 301–311.Google ScholarGoogle Scholar
  69. Tan Kim Geok, Khaing Zar Aung, Moe Sandar Aung, Min Thu Soe, Azlan Abdaziz, Chia Pao Liew, Ferdous Hossain, Chih P. Tso, and Wong Hin Yong. 2021. Review of Indoor Positioning: Radio Wave Technology. Applied Sciences 11, 1 (2021). https://www.mdpi.com/2076-3417/11/1/279Google ScholarGoogle Scholar
  70. Tan Kim Geok, Khaing Zar Aung, Moe Sandar Aung, Min Thu Soe, Azlan Abdaziz, Chia Pao Liew, Ferdous Hossain, Chih P Tso, and Wong Hin Yong. 2021. Review of indoor positioning: Radio wave technology. Applied Sciences 11, 1 (2021), 279.Google ScholarGoogle ScholarCross RefCross Ref
  71. Marcin Kolakowski and Jozef Modelski. 2017. First path component power based NLOS mitigation in UWB positioning system. In 2017 25th Telecommunication Forum (TELFOR). IEEE, 1–4.Google ScholarGoogle Scholar
  72. Stefan König, Mark Schmidt, and Christian Hoene. 2010. Precise time of flight measurements in IEEE 802.11 networks by cross-correlating the sampled signal with a continuous Barker code. In The 7th IEEE International Conference on Mobile Ad-hoc and Sensor Systems (IEEE MASS 2010). IEEE, 642–649.Google ScholarGoogle ScholarCross RefCross Ref
  73. Manikanta Kotaru, Kiran Joshi, Dinesh Bharadia, and Sachin Katti. 2015. Spotfi: Decimeter level localization using wifi. In Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication. 269–282.Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. Jeppe Bro Kristensen, Michel Massanet Ginard, Ole Kiel Jensen, and Ming Shen. 2019. Non-line-of-sight identification for UWB indoor positioning systems using support vector machines. In 2019 IEEE MTT-S International Wireless Symposium (IWS). IEEE, 1–3.Google ScholarGoogle ScholarCross RefCross Ref
  75. Jin Kun. 2021. UWB localization algorithm based on BP neural network compensation extended Kalman filter. In Journal of Physics: Conference Series, Vol.  1885. IOP Publishing, 042022.Google ScholarGoogle Scholar
  76. Kyunghyun Lee, Jungkeun Oh, and Kwanho You. 2016. TDOA/AOA based geolocation using Newton method under NLOS environment. In 2016 IEEE International Conference on Cloud Computing and Big Data Analysis (ICCCBDA). IEEE, 373–377.Google ScholarGoogle Scholar
  77. Sangjae Lee, Seungwoo Chae, and Dongsoo Han. 2020. ILoA: Indoor localization using augmented vector of geomagnetic field. IEEE Access 8(2020), 184242–184255.Google ScholarGoogle ScholarCross RefCross Ref
  78. Michael Leigsnering, Fauzia Ahmad, Moeness Amin, and Abdelhak Zoubir. 2014. Multipath exploitation in through-the-wall radar imaging using sparse reconstruction. IEEE Trans. Aerospace Electron. Systems 50, 2 (2014), 920–939.Google ScholarGoogle ScholarCross RefCross Ref
  79. Erik Leitinger, Paul Meissner, Manuel Lafer, and Klaus Witrisal. 2015. Simultaneous localization and mapping using multipath channel information. In 2015 IEEE International Conference on Communication Workshop (ICCW). IEEE, 754–760.Google ScholarGoogle ScholarCross RefCross Ref
  80. Lin Li, Xiansheng Guo, and Nirwan Ansari. 2019. SmartLoc: Smart wireless indoor localization empowered by machine learning. IEEE Transactions on Industrial Electronics 67, 8 (2019), 6883–6893.Google ScholarGoogle ScholarCross RefCross Ref
  81. Shenghong Li, Mark Hedley, Iain B Collings, and David Humphrey. 2015. TDOA-based localization for semi-static targets in NLOS environments. IEEE Wireless Communications Letters 4, 5 (2015), 513–516.Google ScholarGoogle ScholarCross RefCross Ref
  82. Weijie Li, Tingting Zhang, and Qinyu Zhang. 2013. Experimental researches on an UWB NLOS identification method based on machine learning. In 2013 15th IEEE International Conference on Communication Technology. IEEE, 473–477.Google ScholarGoogle Scholar
  83. Xiaohui Li, Xiong Cai, Yongqiang Hei, and Ruiyang Yuan. 2017. NLOS identification and mitigation based on channel state information for indoor WiFi localisation. Iet Communications 11, 4 (2017), 531–537.Google ScholarGoogle ScholarDigital LibraryDigital Library
  84. Yuxiao Li, Santiago Mazuelas, and Yuan Shen. 2021. Deep GEM-based network for weakly supervised UWB ranging error mitigation. In MILCOM 2021-2021 IEEE Military Communications Conference (MILCOM). IEEE, 528–532.Google ScholarGoogle ScholarDigital LibraryDigital Library
  85. Yuxiao Li, Santiago Mazuelas, and Yuan Shen. 2021. A semi-supervised learning approach for ranging error mitigation based on UWB waveform. In MILCOM 2021-2021 IEEE Military Communications Conference (MILCOM). IEEE, 533–537.Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. Zan Li, Torsten Braun, and Desislava C Dimitrova. 2015. A passive wifi source localization system based on fine-grained power-based trilateration. In 2015 IEEE 16th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM). IEEE, 1–9.Google ScholarGoogle ScholarCross RefCross Ref
  87. Cung Lian Sang, Michael Adams, Timm Hörmann, Marc Hesse, Mario Porrmann, and Ulrich Rückert. 2019. Numerical and experimental evaluation of error estimation for two-way ranging methods. Sensors 19, 3 (2019), 616.Google ScholarGoogle ScholarCross RefCross Ref
  88. Junhui Liang, Jin He, Wenxian Yu, and Trieu-Kien Truong. 2021. Single-site 3-D positioning in multipath environments using DOA-delay measurements. IEEE Communications Letters 25, 8 (2021), 2559–2563.Google ScholarGoogle ScholarCross RefCross Ref
  89. Dawei Liu, Moon-Chuen Lee, Chi-Man Pun, and Hongli Liu. 2013. Analysis of wireless localization in nonline-of-sight conditions. IEEE transactions on vehicular technology 62, 4 (2013), 1484–1492.Google ScholarGoogle ScholarCross RefCross Ref
  90. Hui Liu, Houshang Darabi, Pat Banerjee, and Jing Liu. 2007. Survey of wireless indoor positioning techniques and systems. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 37, 6 (2007), 1067–1080.Google ScholarGoogle ScholarDigital LibraryDigital Library
  91. Qingzhi Liu, Zhendong Yin, Yanlong Zhao, Zhilu Wu, and Mingyang Wu. 2022. UWB LOS/NLOS identification in multiple indoor environments using deep learning methods. Physical Communication 52 (2022), 101695.Google ScholarGoogle ScholarDigital LibraryDigital Library
  92. Zhongling Liu, Ming Yang, Chaojie Xu, and Hui Yu. 2017. A novel ultra-wideband-based localization and tracking scheme with channel classification. In 2017 IEEE 85th Vehicular Technology Conference (VTC Spring). IEEE, 1–5.Google ScholarGoogle ScholarCross RefCross Ref
  93. José Antonio López-Pastor, Pedro Arques-Lara, Juan José Franco-Peñaranda, Antonio Javier García-Sánchez, and José Luis Gómez-Tornero. 2021. Wi-Fi RTT-Based Active Monopulse RADAR for Single Access Point Localization. IEEE Access 9(2021), 34755–34766.Google ScholarGoogle ScholarCross RefCross Ref
  94. Ahmed Makki, Abubakr Siddig, Mohamed Saad, and Chris Bleakley. 2015. Survey of WiFi positioning using time-based techniques. Computer Networks 88(2015), 218–233.Google ScholarGoogle ScholarDigital LibraryDigital Library
  95. Chengzhi Mao, Kangbo Lin, Tiancheng Yu, and Yuan Shen. 2018. A probabilistic learning approach to UWB ranging error mitigation. In 2018 IEEE Global Communications Conference (GLOBECOM). IEEE, 1–6.Google ScholarGoogle ScholarDigital LibraryDigital Library
  96. Stefano Marano, Wesley M Gifford, Henk Wymeersch, and Moe Z Win. 2010. NLOS identification and mitigation for localization based on UWB experimental data. IEEE Journal on selected areas in communications 28, 7(2010), 1026–1035.Google ScholarGoogle ScholarDigital LibraryDigital Library
  97. Ciaran McElroy, Dries Neirynck, and Michael McLaughlin. 2014. Comparison of wireless clock synchronization algorithms for indoor location systems. In 2014 IEEE International Conference on Communications Workshops (ICC). IEEE, 157–162.Google ScholarGoogle ScholarCross RefCross Ref
  98. Germán Martín Mendoza-Silva, Joaquín Torres-Sospedra, and Joaquín Huerta. 2019. A meta-review of indoor positioning systems. Sensors 19, 20 (2019), 4507.Google ScholarGoogle ScholarCross RefCross Ref
  99. Zhi-Min Miao, Lu-Wen Zhao, Wei-Wei Yuan, and Feng-Lin Jin. 2016. Application of one-class classification in NLOS identification of UWB positioning. In 2016 International Conference on Information System and Artificial Intelligence (ISAI). IEEE, 318–322.Google ScholarGoogle ScholarCross RefCross Ref
  100. Mahmood F Mosleh and AK Daraj. 2021. Indoor Localization Improvements Based on Average RSS Samples. In IOP Conference Series: Materials Science and Engineering, Vol.  1105. IOP Publishing, 012024.Google ScholarGoogle Scholar
  101. Ardiansyah Musa, Gde Dharma Nugraha, Hyojeong Han, Deokjai Choi, Seongho Seo, and Juseok Kim. 2019. A decision tree-based NLOS detection method for the UWB indoor location tracking accuracy improvement. International Journal of Communication Systems 32, 13 (2019), e3997.Google ScholarGoogle ScholarCross RefCross Ref
  102. Sung-Chan Nam, Hong-Beom Choi, and Young-Bae Ko. 2022. On Mitigation of Ranging Errors for Through-the-Body NLOS Conditions using Convolutional Neural Networks. In 2022 24th International Conference on Advanced Communication Technology (ICACT). IEEE, 141–144.Google ScholarGoogle ScholarCross RefCross Ref
  103. Srivathsan Chakaravarthi Narasimman and Arokiaswami Alphones. 2024. DumbLoc: Dumb Indoor Localization Framework using WiFi Fingerprinting. IEEE Sensors Journal(2024).Google ScholarGoogle Scholar
  104. Ahasanun Nessa, Bhagawat Adhikari, Fatima Hussain, and Xavier N Fernando. 2020. A survey of machine learning for indoor positioning. IEEE access 8(2020), 214945–214965.Google ScholarGoogle ScholarCross RefCross Ref
  105. Quoc-Tuong Ngo, Pierre Roussel, Bruce Denby, and Gerard Dreyfus. 2015. Correcting non-line-of-sight path length estimation for ultra-wideband indoor localization. In 2015 International Conference on Localization and GNSS (ICL-GNSS). IEEE, 1–6.Google ScholarGoogle ScholarCross RefCross Ref
  106. Viet-Hung Nguyen, Minh-Tuan Nguyen, Jeongsik Choi, and Yong-Hwa Kim. 2018. NLOS identification in WLANs using deep LSTM with CNN features. Sensors 18, 11 (2018), 4057.Google ScholarGoogle ScholarCross RefCross Ref
  107. Raphael E Nkrow, Bruno Silva, Dutliff Boshoff, and Gerhard P Hancke. 2023. Transfer Learning-Based NLOS Identification for UWB in Dynamic Obstructed Settings. IEEE Transactions on Industrial Informatics(2023).Google ScholarGoogle Scholar
  108. Raphael E Nkrow, Bruno J Silva, Dutliff Boshoff, and Gerhard P Hancke. 2023. UWB-Based NLOS Identification and Mitigation: A Performance Evaluation in Dynamic Settings. In IECON 2023-49th Annual Conference of the IEEE Industrial Electronics Society. IEEE, 1–6.Google ScholarGoogle Scholar
  109. Raphael Elikplim Nkrow, Bruno Jorge Silva, Gerhard P Hancke, Adnan Abu-Mahfouz, and Lei Shu. 2022. Wi-Fi Fine Time Measurement: Is it a Viable Alternative to Ultrawideband for Ranging in Industrial Environments?IEEE Industrial Electronics Magazine(2022).Google ScholarGoogle Scholar
  110. Huthaifa Obeidat, Wafa Shuaieb, Omar Obeidat, and Raed Abd-Alhameed. 2021. A review of indoor localization techniques and wireless technologies. Wireless Personal Communications(2021), 1–39.Google ScholarGoogle Scholar
  111. Sinno Jialin Pan and Qiang Yang. 2010. A Survey on Transfer Learning. IEEE Transactions on Knowledge and Data Engineering 22, 10(2010), 1345–1359. https://doi.org/10.1109/TKDE.2009.191Google ScholarGoogle ScholarDigital LibraryDigital Library
  112. Kuntal Panwar, Mayur Katwe, Prabhu Babu, Pradnya Ghare, and Keshav Singh. 2022. A majorization-minimization algorithm for hybrid TOA-RSS based localization in NLOS environment. IEEE Communications Letters 26, 5 (2022), 1017–1021.Google ScholarGoogle ScholarCross RefCross Ref
  113. JiWoong Park, SungChan Nam, HongBeom Choi, YoungEun Ko, and Young-Bae Ko. 2020. Improving deep learning-based uwb los/nlos identification with transfer learning: An empirical approach. Electronics 9, 10 (2020), 1714.Google ScholarGoogle ScholarCross RefCross Ref
  114. Tianzhu Qiao and Huaping Liu. 2014. Improved least median of squares localization for non-line-of-sight mitigation. IEEE Communications Letters 18, 8 (2014), 1451–1454.Google ScholarGoogle ScholarCross RefCross Ref
  115. Mohammed Ramadan, Vladica Sark, Jesus Gutierrez, and Eckhard Grass. 2018. NLOS identification for indoor localization using random forest algorithm. In WSA 2018; 22nd International ITG Workshop on Smart Antennas. VDE, 1–5.Google ScholarGoogle Scholar
  116. Matteo Ridolfi, Abdil Kaya, Rafael Berkvens, Maarten Weyn, Wout Joseph, and Eli De Poorter. 2021. Self-calibration and Collaborative Localization for UWB Positioning Systems: A Survey and Future Research Directions. ACM Computing Surveys (CSUR) 54, 4 (2021), 1–27.Google ScholarGoogle ScholarDigital LibraryDigital Library
  117. Cung Lian Sang, Michael Adams, Timm Hörmann, Marc Hesse, Mario Porrmann, and Ulrich Rückert. 2018. An analytical study of time of flight error estimation in two-way ranging methods. In 2018 International Conference on Indoor Positioning and Indoor Navigation (IPIN). IEEE, 1–8.Google ScholarGoogle ScholarCross RefCross Ref
  118. Cung Lian Sang, Bastian Steinhagen, Jonas Dominik Homburg, Michael Adams, Marc Hesse, and Ulrich Rückert. 2020. Identification of NLOS and multi-path conditions in UWB localization using machine learning methods. Applied Sciences 10, 11 (2020), 3980.Google ScholarGoogle ScholarCross RefCross Ref
  119. Vladimir Savic, Javier Ferrer-Coll, Per Ängskog, José Chilo, Peter Stenumgaard, and Erik G. Larsson. 2015. Measurement Analysis and Channel Modeling for TOA-Based Ranging in Tunnels. IEEE Transactions on Wireless Communications 14, 1(2015), 456–467.Google ScholarGoogle ScholarDigital LibraryDigital Library
  120. Ali H Sayed, Alireza Tarighat, and Nima Khajehnouri. 2005. Network-based wireless location: challenges faced in developing techniques for accurate wireless location information. IEEE Signal Process. Mag. 22, 4 (2005), 24–40.Google ScholarGoogle ScholarCross RefCross Ref
  121. Lorenz Schmid, David Salido-Monzú, and Andreas Wieser. 2019. Accuracy assessment and learned error mitigation of UWB ToF ranging. In 2019 International Conference on Indoor Positioning and Indoor Navigation (IPIN). IEEE, 1–8.Google ScholarGoogle ScholarCross RefCross Ref
  122. Philipp Schulz, Norman Franchi, and Gerhard Fettweis. 2021. RSS-based Localization of Multiple Unknown Transmitters through Particle Simulation. In 2021 1st IEEE International Online Symposium on Joint Communications & Sensing (JC&S). IEEE, 01–06.Google ScholarGoogle ScholarCross RefCross Ref
  123. Behailu Y Shikur and Tobias Weber. 2014. Tdoa/aod/aoa localization in nlos environments. In 2014 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, 6518–6522.Google ScholarGoogle ScholarCross RefCross Ref
  124. Parnian A ShirinAbadi and Arash Abbasi. 2019. Uwb channel classification using convolutional neural networks. In 2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON). IEEE, 1064–1068.Google ScholarGoogle Scholar
  125. Minghao Si, Yunjia Wang, Shenglei Xu, Meng Sun, and Hongji Cao. 2020. A Wi-Fi FTM-based indoor positioning method with LOS/NLOS identification. Applied Sciences 10, 3 (2020), 956.Google ScholarGoogle ScholarCross RefCross Ref
  126. Bruno Silva, Roy M Fisher, Anuj Kumar, and Gerhard P Hancke. 2015. Experimental link quality characterization of wireless sensor networks for underground monitoring. IEEE Transactions on Industrial Informatics 11, 5 (2015), 1099–1110.Google ScholarGoogle ScholarCross RefCross Ref
  127. Bruno Silva and Gerhard P Hancke. 2016. IR-UWB-based non-line-of-sight identification in harsh environments: Principles and challenges. IEEE Transactions on Industrial Informatics 12, 3 (2016), 1188–1195.Google ScholarGoogle ScholarCross RefCross Ref
  128. Bruno Silva and Gerhard P Hancke. 2020. Ranging error mitigation for through-the-wall non-line-of-sight conditions. IEEE Transactions on Industrial Informatics 16, 11 (2020), 6903–6911.Google ScholarGoogle ScholarCross RefCross Ref
  129. Bruno J Silva and Gerhard P Hancke. 2019. An approach to improve location accuracy in non-line-of-sight scenarios using floor plans. In 2019 IEEE 17th International Conference on Industrial Informatics (INDIN), Vol.  1. IEEE, 1715–1718.Google ScholarGoogle ScholarCross RefCross Ref
  130. Bruno J Silva and Gerhard P Hancke. 2020. Non-line-of-sight identification without channel statistics. In IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society. IEEE, 4489–4493.Google ScholarGoogle ScholarCross RefCross Ref
  131. Maximilian Stahlke, Sebastian Kram, Christopher Mutschler, and Thomas Mahr. 2020. NLOS detection using UWB channel impulse responses and convolutional neural networks. In 2020 International Conference on Localization and GNSS (ICL-GNSS). IEEE, 1–6.Google ScholarGoogle ScholarCross RefCross Ref
  132. Maximilian Stahlke, Sebastian Kram, Felix Ott, Tobias Feigl, and Christopher Mutschler. 2021. Estimating toa reliability with variational autoencoders. IEEE Sensors Journal 22, 6 (2021), 5133–5140.Google ScholarGoogle ScholarCross RefCross Ref
  133. Zhenqiang Su, Genfu Shao, and Huaping Liu. 2016. A soft-minimum method for NLOS error mitigation in TOA systems. In 2016 IEEE 84th Vehicular Technology Conference (VTC-Fall). IEEE, 1–4.Google ScholarGoogle ScholarCross RefCross Ref
  134. Zhenqiang Su, Genfu Shao, and Huaping Liu. 2017. Semidefinite programming for NLOS error mitigation in TDOA localization. IEEE communications letters 22, 7 (2017), 1430–1433.Google ScholarGoogle Scholar
  135. Sangmo Sung, Hokeun Kim, and Jae-Il Jung. 2023. Accurate Indoor Positioning for UWB-Based Personal Devices Using Deep Learning. IEEE Access 11(2023), 20095–20113.Google ScholarGoogle ScholarCross RefCross Ref
  136. Robert Szewczyk and Paweł Hanus. 2023. NFC technology for precise localization in areas with limited global navigation satellite system signal. Geomatics, Landmanagement and Landscape(2023).Google ScholarGoogle Scholar
  137. Chao Tang, Chengyang He, and Lihua Dou. 2021. An IMU/ODM/UWB Joint Localization System Based on Modified Cubature Kalman Filtering. Sensors 21, 14 (2021), 4823.Google ScholarGoogle ScholarCross RefCross Ref
  138. Zain Bin Tariq, Dost Muhammad Cheema, Muhammad Zahir Kamran, and Ijaz Haider Naqvi. 2017. Non-GPS positioning systems: A survey. ACM Computing Surveys (CSUR) 50, 4 (2017), 1–34.Google ScholarGoogle ScholarDigital LibraryDigital Library
  139. Qinglin Tian, I Kevin, Kai Wang, and Zoran Salcic. 2018. Human body shadowing effect on UWB-based ranging system for pedestrian tracking. IEEE Transactions on Instrumentation and Measurement 68, 10(2018), 4028–4037.Google ScholarGoogle ScholarCross RefCross Ref
  140. Slavisa Tomic and Marko Beko. 2018. A robust NLOS bias mitigation technique for RSS-TOA-based target localization. IEEE Signal Processing Letters 26, 1 (2018), 64–68.Google ScholarGoogle ScholarCross RefCross Ref
  141. Slavisa Tomic, Marko Beko, Milan Tuba, and Victor M Franco Correia. 2018. Target localization in NLOS environments using RSS and TOA measurements. IEEE Wireless Communications Letters 7, 6 (2018), 1062–1065.Google ScholarGoogle ScholarCross RefCross Ref
  142. Don J Torrieri. 1984. Statistical theory of passive location systems. IEEE Trans. Aerosp. Electron. Syst.2 (1984), 183–198.Google ScholarGoogle ScholarCross RefCross Ref
  143. Duc Hoang Tran, ByungDeok Chung, and Yeong Min Jang. 2022. GAN-based Data Augmentation for UWB NLOS Identification Using Machine Learning. In 2022 International Conference on Artificial Intelligence in Information and Communication (ICAIIC). IEEE, 417–420.Google ScholarGoogle Scholar
  144. Marcin Uradzinski, Hang Guo, Xiaokang Liu, and Min Yu. 2017. Advanced indoor positioning using zigbee wireless technology. Wireless Personal Communications 97, 4 (2017), 6509–6518.Google ScholarGoogle ScholarDigital LibraryDigital Library
  145. Reza Monir Vaghefi and R Michael Buehrer. 2015. Cooperative localization in NLOS environments using semidefinite programming. IEEE Communications Letters 19, 8 (2015), 1382–1385.Google ScholarGoogle ScholarCross RefCross Ref
  146. Frank Van Diggelen and Per Enge. 2015. The world’s first GPS MOOC and worldwide laboratory using smartphones. In Proceedings of the 28th international technical meeting of the satellite division of the institute of navigation (ION GNSS+ 2015). 361–369.Google ScholarGoogle Scholar
  147. Thang Van Nguyen, Youngmin Jeong, Hyundong Shin, and Moe Z Win. 2015. Machine learning for wideband localization. IEEE Journal on Selected Areas in Communications 33, 7(2015), 1357–1380.Google ScholarGoogle ScholarDigital LibraryDigital Library
  148. S Venkatesh and RM Buehrer. 2007. Non-line-of-sight identification in ultra-wideband systems based on received signal statistics. IET Microwaves, Antennas & Propagation 1, 6 (2007), 1120–1130.Google ScholarGoogle ScholarCross RefCross Ref
  149. Swaroop Venkatesh and R Michael Buehrer. 2006. A linear programming approach to NLOS error mitigation in sensor networks. In Proc. ACM IPSN. 301–308.Google ScholarGoogle ScholarDigital LibraryDigital Library
  150. Swaroop Venkatesh and R Michael Buehrer. 2007. NLOS mitigation using linear programming in ultrawideband location-aware networks. IEEE transactions on Vehicular Technology 56, 5 (2007), 3182–3198.Google ScholarGoogle ScholarCross RefCross Ref
  151. Fang Wang, Hai Tang, and Jialei Chen. 2023. Survey on NLOS Identification and Error Mitigation for UWB Indoor Positioning. Electronics 12, 7 (2023), 1678.Google ScholarGoogle ScholarCross RefCross Ref
  152. Fei Wang, Zhan Xu, Ruxin Zhi, Jinhui Chen, and Peiyue Zhang. 2019. Los/nlos channel identification technology based on cnn. In 2019 6th NAFOSTED Conference on Information and Computer Science (NICS). IEEE, 200–203.Google ScholarGoogle ScholarCross RefCross Ref
  153. Gang Wang, Hongyang Chen, Youming Li, and Nirwan Ansari. 2014. NLOS error mitigation for TOA-based localization via convex relaxation. IEEE Transactions on Wireless Communications 13, 8(2014), 4119–4131.Google ScholarGoogle ScholarCross RefCross Ref
  154. Gang Wang, Anthony Man-Cho So, and Youming Li. 2016. Robust convex approximation methods for TDOA-based localization under NLOS conditions. IEEE Transactions on Signal processing 64, 13 (2016), 3281–3296.Google ScholarGoogle ScholarDigital LibraryDigital Library
  155. Gang Wang, Shengjin Zhang, Haotian Chen, and Youming Li. 2018. Robust TOA-based cooperative localization under NLOS conditions. In 2018 24th Asia-Pacific Conference on Communications (APCC). IEEE, 418–421.Google ScholarGoogle ScholarCross RefCross Ref
  156. Tianyu Wang, Keke Hu, Zhihang Li, Kangbo Lin, Jian Wang, and Yuan Shen. 2020. A semi-supervised learning approach for UWB ranging error mitigation. IEEE Wireless Communications Letters 10, 3 (2020), 688–691.Google ScholarGoogle ScholarCross RefCross Ref
  157. Wei Wang, Gang Wang, Jie Zhang, and Youming Li. 2017. Robust weighted least squares method for TOA-based localization under mixed LOS/NLOS conditions. IEEE Communications Letters 21, 10 (2017), 2226–2229.Google ScholarGoogle ScholarCross RefCross Ref
  158. Yunlong Wang, Kai Gu, Ying Wu, Wei Dai, and Yuan Shen. 2019. Exploiting NLOS bias correlation in cooperative localization. In 2019 IEEE International Conference on Communications Workshops (ICC Workshops). IEEE, 1–5.Google ScholarGoogle ScholarCross RefCross Ref
  159. Yunlong Wang, Kai Gu, Ying Wu, Wei Dai, and Yuan Shen. 2020. NLOS effect mitigation via spatial geometry exploitation in cooperative localization. IEEE Transactions on Wireless Communications 19, 9(2020), 6037–6049.Google ScholarGoogle ScholarCross RefCross Ref
  160. Chin-Der Wann and Chih-Sheng Hsueh. 2007. NLOS mitigation with biased Kalman filters for range estimation in UWB systems. In TENCON 2007-2007 IEEE Region 10 Conference. IEEE, 1–4.Google ScholarGoogle ScholarCross RefCross Ref
  161. Fuxi Wen, Josef Kulmer, Klaus Witrisal, and Henk Wymeersch. 2020. 5G positioning and mapping with diffuse multipath. IEEE Transactions on Wireless Communications 20, 2(2020), 1164–1174.Google ScholarGoogle ScholarDigital LibraryDigital Library
  162. Kai Wen, Kegen Yu, and Yingbing Li. 2017. NLOS identification and compensation for UWB ranging based on obstruction classification. In 2017 25th European signal processing conference (EUSIPCO). IEEE, 2704–2708.Google ScholarGoogle Scholar
  163. Stephan Winter, Martin Tomko, Maria Vasardani, Kai-Florian Richter, Kourosh Khoshelham, and Mohsen Kalantari. 2019. Infrastructure-independent indoor localization and navigation. ACM Computing Surveys (CSUR) 52, 3 (2019), 1–24.Google ScholarGoogle ScholarDigital LibraryDigital Library
  164. Klaus Witrisal and Paul Meissner. 2012. Performance bounds for multipath-assisted indoor navigation and tracking (MINT). In 2012 IEEE International Conference on Communications (ICC). IEEE, 4321–4325.Google ScholarGoogle ScholarCross RefCross Ref
  165. Chenshu Wu, Zheng Yang, Zimu Zhou, Kun Qian, Yunhao Liu, and Mingyan Liu. 2015. PhaseU: Real-time LOS identification with WiFi. In 2015 IEEE conference on computer communications (INFOCOM). IEEE, 2038–2046.Google ScholarGoogle ScholarCross RefCross Ref
  166. Huafeng Wu, Linian Liang, Xiaojun Mei, and Yuanyuan Zhang. 2022. A convex optimization approach for NLOS error mitigation in TOA-based localization. IEEE Signal Processing Letters 29 (2022), 677–681.Google ScholarGoogle ScholarCross RefCross Ref
  167. Shaohua Wu, Yongkui Ma, Qinyu Zhang, and Naitong Zhang. 2007. NLOS error mitigation for UWB ranging in dense multipath environments. In 2007 IEEE Wireless Communications and Networking Conference. IEEE, 1565–1570.Google ScholarGoogle ScholarDigital LibraryDigital Library
  168. Shixun Wu, Shengjun Zhang, and Darong Huang. 2019. A TOA-based localization algorithm with simultaneous NLOS mitigation and synchronization error elimination. IEEE Sensors Letters 3, 3 (2019), 1–4.Google ScholarGoogle ScholarCross RefCross Ref
  169. ZhenQian Wu, YouMing Li, Xiangpei Meng, Xinrong Lv, and Qiang Guo. 2023. A Minimum Joint Error Entropy-Based Localization Method in Mixed LOS/NLOS Environments. IEEE Internet of Things Journal(2023).Google ScholarGoogle ScholarCross RefCross Ref
  170. Kenny Fong Peng Wye, Syed Muhammad Mamduh Syed Zakaria, Latifah Munirah Kamarudin, Ammar Zakaria, Norhawati Binti Ahmad, and Kamarulzaman Kamarudin. 2021. RSS-based Fingerprinting Localization with Artificial Neural Network. In Journal of Physics: Conference Series, Vol.  1755. IOP Publishing, 012033.Google ScholarGoogle Scholar
  171. Henk Wymeersch, Stefano Maranò, Wesley M Gifford, and Moe Z Win. 2012. A machine learning approach to ranging error mitigation for UWB localization. IEEE transactions on communications 60, 6 (2012), 1719–1728.Google ScholarGoogle ScholarCross RefCross Ref
  172. Fu Xiao, Zhengxin Guo, Hai Zhu, Xiaohui Xie, and Ruchuan Wang. 2017. AmpN: Real-time LOS/NLOS identification with WiFi. In 2017 IEEE International Conference on Communications (ICC). IEEE, 1–7.Google ScholarGoogle ScholarCross RefCross Ref
  173. Zhuoling Xiao, Hongkai Wen, Andrew Markham, Niki Trigoni, Phil Blunsom, and Jeff Frolik. 2014. Non-line-of-sight identification and mitigation using received signal strength. IEEE Transactions on Wireless Communications 14, 3(2014), 1689–1702.Google ScholarGoogle ScholarDigital LibraryDigital Library
  174. Yaqin Xie, Lili Zhou, Yu Zhang, Hai Huan, and Zhizhong Zhang. 2022. Simultaneous Localization of Scatterers and Target User Based on Indoor Prior Information in NLOS Environments. IEEE Transactions on Vehicular Technology 71, 11 (2022), 11729–11740.Google ScholarGoogle ScholarCross RefCross Ref
  175. Cheng-Yu Yang, Wan-Ting Shih, Chao-Kai Wen, Shang-Ho Tsai, and Chau Yuen. 2024. Enhancing WiFi Access Point Localization with AI-based Filtering. IEEE Communications Letters(2024).Google ScholarGoogle ScholarCross RefCross Ref
  176. Haoxiao Yang, Liang Chen, Han Liu, and Guanwen Zhu. 2024. Dynamic Feature-fused Localization with Smartphones Exploiting 5G NR SSB and Wi-Fi for Indoor Environments. IEEE Transactions on Instrumentation and Measurement (2024).Google ScholarGoogle ScholarCross RefCross Ref
  177. Kai Yang, Jianping An, Xiangyuan Bu, and Yao Lu. 2010. A TOA-based location algorithm for NLOS environments using quadratic programming. In 2010 IEEE wireless communication and networking conference. IEEE, 1–5.Google ScholarGoogle Scholar
  178. Xiaofeng Yang. 2018. NLOS mitigation for UWB localization based on sparse pseudo-input Gaussian process. IEEE Sensors Journal 18, 10 (2018), 4311–4316.Google ScholarGoogle ScholarCross RefCross Ref
  179. Lili Yi, Sirajudeen Gulam Razul, Zhiping Lin, and Chong-Meng See. 2013. Gating and robust EKF based target tracking in mixed LOS/NLOS environments. In 2013 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 1364–1367.Google ScholarGoogle Scholar
  180. Kegen Yu and Y Jay Guo. 2007. NLOS error mitigation for mobile location estimation in wireless networks. In 2007 IEEE 65th Vehicular Technology Conference-VTC2007-Spring. IEEE, 1071–1075.Google ScholarGoogle ScholarCross RefCross Ref
  181. Kegen Yu, Kai Wen, Yingbing Li, Shuai Zhang, and Kefei Zhang. 2018. A novel NLOS mitigation algorithm for UWB localization in harsh indoor environments. IEEE Transactions on Vehicular Technology 68, 1 (2018), 686–699.Google ScholarGoogle ScholarCross RefCross Ref
  182. Lei Yu, Mohamed Laaraiedh, Stéphane Avrillon, and Bernard Uguen. 2011. Fingerprinting localization based on neural networks and ultra-wideband signals. In 2011 IEEE international symposium on signal processing and information technology (ISSPIT). IEEE, 184–189.Google ScholarGoogle ScholarDigital LibraryDigital Library
  183. Haiyu Zeng, Rui Xie, Rong Xu, Weihen Dai, and Shiwei Tian. 2019. A novel approach to NLOS identification for UWB positioning based on kernel learning. In 2019 IEEE 19th International Conference on Communication Technology (ICCT). IEEE, 451–455.Google ScholarGoogle ScholarCross RefCross Ref
  184. Zhuoqi Zeng, Rubing Bai, Lei Wang, and Steven Liu. 2019. NLOS identification and mitigation based on CIR with particle filter. In 2019 IEEE Wireless Communications and Networking Conference (WCNC). IEEE, 1–6.Google ScholarGoogle ScholarDigital LibraryDigital Library
  185. Zhuoqi Zeng, Steven Liu, and Lei Wang. 2018. Nlos identification for uwb based on channel impulse response. In 2018 12th International Conference on Signal Processing and Communication Systems (ICSPCS). IEEE, 1–6.Google ScholarGoogle ScholarCross RefCross Ref
  186. Zhuoqi Zeng, Steven Liu, and Lei Wang. 2018. UWB/IMU integration approach with NLOS identification and mitigation. In 2018 52nd Annual Conference on Information Sciences and Systems (CISS). IEEE, 1–6.Google ScholarGoogle ScholarCross RefCross Ref
  187. Zhuoqi Zeng, Steven Liu, and Lei Wang. 2019. UWB NLOS identification with feature combination selection based on genetic algorithm. In 2019 IEEE International Conference on Consumer Electronics (ICCE). IEEE, 1–5.Google ScholarGoogle ScholarCross RefCross Ref
  188. Jiuwu Zhang, Xiulong Liu, Sheng Chen, Xinyu Tong, Zeyu Deng, Tao Gu, and Keqiu Li. 2024. Toward Robust RFID Localization via Mobile Robot. IEEE/ACM Transactions on Networking(2024).Google ScholarGoogle ScholarCross RefCross Ref
  189. Kexin Zhang, Zhihong Xi, and Fenghao Zheng. 2023. UWB Indoor Positioning System Based on NLOS Recognition. In 2023 IEEE 6th International Conference on Automation, Electronics and Electrical Engineering (AUTEEE). IEEE, 376–379.Google ScholarGoogle Scholar
  190. Qiang Zhang, Dengkang Zhao, Shaojun Zuo, Tingting Zhang, and Dan Ma. 2015. A low complexity NLOS error mitigation method in UWB localization. In 2015 IEEE/CIC International Conference on Communications in China (ICCC). IEEE, 1–5.Google ScholarGoogle ScholarCross RefCross Ref
  191. Shengjin Zhang, Shangchao Gao, Gang Wang, and Youming Li. 2015. Robust NLOS error mitigation method for TOA-based localization via second-order cone relaxation. IEEE Communications Letters 19, 12 (2015), 2210–2213.Google ScholarGoogle ScholarCross RefCross Ref
  192. Yuxuan Zhao and Manyi Wang. 2022. The LOS/NLOS Classification Method Based on Deep Learning for the UWB Localization System in Coal Mines. Applied Sciences 12, 13 (2022), 6484.Google ScholarGoogle ScholarCross RefCross Ref
  193. Zimu Zhou, Zheng Yang, Chenshu Wu, Longfei Shangguan, Haibin Cai, Yunhao Liu, and Lionel M Ni. 2015. WiFi-based indoor line-of-sight identification. IEEE Transactions on Wireless Communications 14, 11(2015), 6125–6136.Google ScholarGoogle ScholarDigital LibraryDigital Library
  194. Jianan Zhu and Solmaz S Kia. 2019. Bias compensation for UWB ranging for pedestrian geolocation applications. IEEE Sensors Letters 3, 9 (2019), 1–4.Google ScholarGoogle ScholarCross RefCross Ref
  195. Jianan Zhu and Solmaz S Kia. 2020. UWB ranging aided pedestrian geolocation with GPB-based filtering for LoS and NLoS measurement processing. In 2020 IEEE/ION Position, Location and Navigation Symposium (PLANS). IEEE, 781–787.Google ScholarGoogle Scholar
  196. Jianan Zhu and Solmaz S Kia. 2021. Decentralized cooperative localization with LoS and NLoS UWB inter-agent ranging. IEEE Sensors Journal 22, 6 (2021), 5447–5456.Google ScholarGoogle ScholarCross RefCross Ref
  197. Xiaoqiang Zhu, Wenyu Qu, Tie Qiu, Laiping Zhao, Mohammed Atiquzzaman, and Dapeng Oliver Wu. 2020. Indoor intelligent fingerprint-based localization: Principles, approaches and challenges. IEEE Communications Surveys & Tutorials 22, 4 (2020), 2634–2657.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. NLOS Identification and Mitigation for Time-based Indoor Localization Systems: Survey and Future Research Directions

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Computing Surveys
            ACM Computing Surveys Just Accepted
            ISSN:0360-0300
            EISSN:1557-7341
            Table of Contents

            Copyright © 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Online AM: 7 May 2024
            • Accepted: 17 April 2024
            • Revised: 13 March 2024
            • Received: 25 April 2023

            Check for updates

            Qualifiers

            • survey
          • Article Metrics

            • Downloads (Last 12 months)163
            • Downloads (Last 6 weeks)163

            Other Metrics

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader