• Open Access

Quantum Work Statistics at Strong Reservoir Coupling

Owen Diba, Harry J. D. Miller, Jake Iles-Smith, and Ahsan Nazir
Phys. Rev. Lett. 132, 190401 – Published 7 May 2024

Abstract

Determining the statistics of work done on a quantum system while strongly coupled to a reservoir is a formidable task, requiring the calculation of the full eigenspectrum of the combined system and reservoir. Here, we show that this issue can be circumvented by using a polaron transformation that maps the system into a new frame where weak-coupling theory can be applied. Crucially, this polaron approach reproduces the Jarzynski fluctuation theorem, thus ensuring consistency with the laws of stochastic thermodynamics. We apply our formalism to a system driven across the Landau-Zener transition, where we identify clear signatures in the work distribution arising from a non-negligible coupling to the environment. Our results provide a new method for studying the stochastic thermodynamics of driven quantum systems beyond Markovian, weak-coupling regimes.

  • Figure
  • Figure
  • Received 3 May 2023
  • Accepted 25 March 2024

DOI:https://doi.org/10.1103/PhysRevLett.132.190401

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Quantum Information, Science & TechnologyStatistical Physics & Thermodynamics

Authors & Affiliations

Owen Diba, Harry J. D. Miller, Jake Iles-Smith, and Ahsan Nazir

  • Department of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, United Kingdom

Article Text

Click to Expand

Supplemental Material

Click to Expand

References

Click to Expand
Issue

Vol. 132, Iss. 19 — 10 May 2024

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×