Skip to content
Licensed Unlicensed Requires Authentication Published online by De Gruyter May 8, 2024

Analysis of the state of the art technologies for the utilization and processing of associated petroleum gas into valuable chemical products

  • Sergey I. Uskov EMAIL logo , Dmitriy I. Potemkin , Artem S. Urlukov and Pavel V. Snytnikov

Abstract

The problems concerning the insufficient level of associated petroleum gas (APG) processing are discussed. Various models are proposed for the chemical utilization of APG, including the production of synthesis gas, methanol, dimethyl ether, ammonia, as well as the processes of aromatization of hydrocarbons, etc. The possibility of using APG as a fuel for generating electricity is discussed. Attention is paid to the processes of APG purification from sulfur impurities. Difficulties and solutions to the problems of the energy sector of APG utilization are discussed.


Corresponding author: Sergey I. Uskov, Boreskov Institute of Catalysis, Pr. Lavrentieva, 5, Novosibirsk 630090, Russia, E-mail:

Funding source: The Ministry of Science and Higher Education of the Russian Federation within the governmental assignment for Boreskov Institute of Catalysis.

Award Identifier / Grant number: Project FWUR-2024-0033

  1. Research ethics: Not applicable.

  2. Author contributions: Uskov S.I.: analysis and discussion of the literature data, work on the text of the manuscript, making changes in accordance with the comments of reviewers. Potemkin D.I.: analysis and discussion of literature data. Urlukov A.S.: analysis and discussion of literature data. Snytnikov P.V.: analysis and discussion of literature data. The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

  4. Research funding: This work was supported by the Ministry of Science and Higher Education of the Russian Federation within the governmental assignment for Boreskov Institute of Catalysis (project FWUR-2024-0033).

  5. Data availability: Not applicable.

References

Abu, R., Patchigolla, K., and Simms, N. (2023). A review on qualitative assessment of natural gas utilisation options for eliminating routine Nigerian gas flaring. Gases 3: 1–24, https://doi.org/10.3390/gases3010001.Search in Google Scholar

Aldoshin, S.M., Arutyunov, V.S., Savchenko, V.I., Sedov, I.V., and Makaryan, I.A. (2016). New horizons of low-tonnage gas chemistry. Bull. Russ. Acad. Sci. 86: 719–727.10.1134/S1019331616040067Search in Google Scholar

Al-Hamamre, Z., Voß, S., and Trimis, D. (2009). Hydrogen production by thermal partial oxidation of hydrocarbon fuels in porous media based reformer. Int. J. Hydrogen Energy 34: 827–832, https://doi.org/10.1016/j.ijhydene.2008.10.085.Search in Google Scholar

Almind, M.R., Vendelbo, S.B., Hansen, M.F., Vinum, M.G., Frandsen, C., Mortensen, P.M., and Engbæk, J.S. (2020). Improving performance of induction-heated steam methane reforming. Catal. Today 342: 13–20, https://doi.org/10.1016/j.cattod.2019.05.005.Search in Google Scholar

Almind, M.R., Vinum, M.G., Wismann, S.T., Hansen, M.F., Vendelbo, S.B., Engbæk, J.S., Mortensen, P.M., Chorkendorff, I., and Frandsen, C. (2021). Optimized CoNi nanoparticle composition for Curie-temperature-controlled induction-heated catalysis. ACS Appl. Nano Mater. 4: 11537–11544, https://doi.org/10.1021/acsanm.1c01941.Search in Google Scholar

Anderson, R.B., Kölbel, H., and Ralek, M. (1984). The Fischer-Tropsch synthesis. Academic Press, New York.Search in Google Scholar

Arutyunov, V.S. (2019). Technological prospects of noncatalytic partial oxidation of light alkanes. Rev. Chem. Eng. 37: 99–123, https://doi.org/10.1515/revce-2018-0057.Search in Google Scholar

Arutyunov, V.S., Savchenko, V.I., Sedov, I.V., Fokin, I.G., Nikitin, A.V., and Strekova, L.N. (2015). New concept for small-scale GTL. Chem. Eng. J. 282: 206–212, https://doi.org/10.1016/j.cej.2015.02.082.Search in Google Scholar

Arutyunov, V.S., Golubeva, I.A., Eliseev, O.L., and Zhagfarov, F.G. (2023). Technology of hydrocarbon gas processing. Yurayt, Moscow, (In Russian).Search in Google Scholar

Atimtay, A.T. (2001). Cleaner energy production with integrated gasification combined cycle systems and use of metal oxide sorbents for H2S cleanup from coal gas. Clean Prod. Process. 2: 197–208, https://doi.org/10.1007/pl00011306.Search in Google Scholar

Avcı, K., Trimm, L., Aksoylu, A.E., and Onsan, Z.I. (2004). Hydrogen production by steam reforming of n-butane over supported Ni and Pt-Ni catalysts. Appl. Catal. Gen. 258: 235–240, https://doi.org/10.1016/j.apcata.2003.09.016.Search in Google Scholar

Azizi, Z., Rezaeimanesh, M., Tohidian, T., and Rahimpour, M.R. (2014). Dimethyl ether: a review of technologies and production challenges. Chem. Eng. Process. 82: 150–172, https://doi.org/10.1016/j.cep.2014.06.007.Search in Google Scholar

Barrera, J.L., Hartvigsen, J.J., Hollist, M., Pike, J., Yarosh, A., Fullilove, N.P., and Beck, V.A. (2023). Design optimization of integrated cooling inserts in modular Fischer-Tropsch reactors. Chem. Eng. Sci. 268: 118423, https://doi.org/10.1016/j.ces.2022.118423.Search in Google Scholar

Blom, P.W.E. and Basson, G.W. (2013). Non-catalytic plasma-arc reforming of natural gas with carbon dioxide as the oxidizing agent for the production of synthesis gas or hydrogen. Int. J. Hydrogen Energy 38: 5684–5692, https://doi.org/10.1016/j.ijhydene.2013.03.042.Search in Google Scholar

Bo, Z., Yang, Y., Chen, J., Yu, K., Yan, J., and Cen, K. (2013). Plasma-enhanced chemical vapor deposition synthesis of vertically oriented graphene nanosheets. Nanoscale 5: 5180–5204, https://doi.org/10.1039/c3nr33449j.Search in Google Scholar PubMed

Bonura, G., Cordaro, M., Cannilla, C., Arena, F., and Frusteri, F. (2014). The changing nature of the active site of Cu-Zn-Zr catalysts for the CO2 hydrogenation reaction to methanol. Appl. Catal. B Environ. 152–153: 152–161, https://doi.org/10.1016/j.apcatb.2014.01.035.Search in Google Scholar

Bradford, M.C.J. and Vannice, M.A. (1999). CO2 reforming of CH4. Catal. Rev. Sci. Eng. 41: 1–42, https://doi.org/10.1081/cr-100101948.Search in Google Scholar

Buzcu-Guven, B., Harriss, R., and Hertzmark, D. (2010). Gas flaring and venting: extent, impacts and remedies. James A. Baker III Institute for Public Policy of Rice University, Available at: <https://repository.rice.edu/items/abbe7a2d-2c53-451c-81aa-8a23dde3cb8b> (Accessed 29 March 2024).Search in Google Scholar

Cavalcanti, F.A.P., Stakheev, A.Yu., and Sachtler, W.M.H. (1992). Direct synthesis of methanol, dimethyl ether, and paraffins from syngas over Pd/Zeolite Y catalysts. J. Catal. 134: 226–241, https://doi.org/10.1016/0021-9517(92)90224-6.Search in Google Scholar

Chabot, G., Guilet, R., Cognet, P., and Gourdon, C. (2015). A mathematical modeling of catalytic milli-fixed bed reactor for Fischer–Tropsch synthesis: influence of tube diameter on Fischer Tropsch selectivity and thermal behavior. Chem. Eng. Sci. 127: 72–83, https://doi.org/10.1016/j.ces.2015.01.015.Search in Google Scholar

Chekushina, T., Shcherba, V., Gomes, A.Ch.S., and Vorobyov, K. (2022). Analysis of associated petroleum gas utilization in Russia and abroad. Subsurf. Manag. Transport. Syst. 12: 53–61, https://doi.org/10.18503/smts-2022-12-2-53-61.Search in Google Scholar

Chou, C.Y. and Lobo, R.F. (2019). Direct conversion of CO2 into methanol over promoted indium oxide-based catalysts. Appl. Catal. Gen. 583: 117144, https://doi.org/10.1016/j.apcata.2019.117144.Search in Google Scholar

Cohen, K., Blanchard, J.Jr., Rodriguez, P., Kelly, K., Dorman, J.A., and Dooley, K.M. (2024). Non-Catalytic direct partial oxidation of methane to methanol in a Wall-Coated microreactor. Chem. Eng. J. 482: 149049.10.1016/j.cej.2024.149049Search in Google Scholar

Corbo, P. and Migliardini, F. (2007). Hydrogen production by catalytic partial oxidation of methane and propane on Ni and Pt catalysts. Int. J. Hydrogen Energy 32: 55–66, https://doi.org/10.1016/j.ijhydene.2006.06.032.Search in Google Scholar

Davies, E.E. and Kolombos, A.J. (1978). Process for converting C3-C12 hydrocarbons to aromatics over gallia-activated zeolite, application no. 4180689.Search in Google Scholar

de Klerk, A. (2020). Transport fuel: biomass-, coal-, gas- and waste-to-liquids processes. In: Letcher, T.M. (Ed.). Future energy, 3rd ed. Elsevier, Amsterdam, pp. 199–226.10.1016/B978-0-08-102886-5.00010-4Search in Google Scholar

Detz, C.M. and Field, L.A. (1980). Benzene synthesis, Application no. 4347394.Search in Google Scholar

Dieterich, V., Buttler, A., Hanel, A., Spliethoff, H., and Fendt, S. (2020). Power-to-liquid via synthesis of methanol, DME or Fischer–Tropsch-fuels: a review. Energy Environ. Sci. 13: 3207–3252, https://doi.org/10.1039/d0ee01187h.Search in Google Scholar

Dong, T., Fei, Q., Genelot, M., Smith, H., Laurens, L.M.L., Watson, M.J., and Pienkos, P.T. (2017). A novel integrated biorefinery process for diesel fuel blendstock production using lipids from the methanotroph, Methylomicrobium buryatense. Energy Convers. Manag. 140: 62–70, https://doi.org/10.1016/j.enconman.2017.02.075.Search in Google Scholar

Dummer, N.F., Willock, D.J., He, Q., Howard, M.J., Lewis, R.J., Qi, G., Taylor, S.H., Xu, J., Bethell, D., Kiely, C.J., et al.. (2023). Methane oxidation to methanol. Chem. Rev. 123: 6359–6411, https://doi.org/10.1021/acs.chemrev.2c00439.Search in Google Scholar PubMed PubMed Central

Emam, E.A. (2015). Gas flaring in industry: an overview. Petrol. Coal 57: 532–555.Search in Google Scholar

ERTA Group (2011). Russian gas industry and the main trends in its development: gas processing, production and supply of liquefied gas, ERTA Group. (in Russian). Available at: http://gasforum.ru/obzory-i-issledovaniya/240/ (Accessed 11 March 2024).Search in Google Scholar

Espinosa, R.L., Jothimurugesan, K., and Raje, A.P. (2002). Iron-based Fisher-Tropsch catalysts and methods of making and using, Application no.7067562.Search in Google Scholar

Fei, J., Hou, Z., Zhu, B., Lou, H., and Zheng, X. (2006a). Synthesis of dimethyl ether (DME) on modified HY zeolite and modified HY zeolite-supported Cu–Mn–Zn catalysts. Appl. Catal. Gen. 304: 49–54, https://doi.org/10.1016/j.apcata.2006.02.019.Search in Google Scholar

Fei, J.H., Tang, X.J., Huo, Z.Y., Lou, H., and Zheng, X.M. (2006b). Effect of copper content on Cu–Mn–Zn/zeolite-Y catalysts for the synthesis of dimethyl ether from syngas. Catal. Commun. 7: 827–831, https://doi.org/10.1016/j.catcom.2006.03.007.Search in Google Scholar

Fei, Q., Guarnieri, M.T., Tao, L., Laurens, L.M.L., Dowe, N., and Pienkos, P.T. (2014). Bioconversion of natural gas to liquid fuel: opportunities and challenges. Biotechnol. Adv. 32: 596–614, https://doi.org/10.1016/j.biotechadv.2014.03.011.Search in Google Scholar PubMed

From, T.N., Partoon, B., Rautenbach, M., Østberg, M., Bentien, A., Aasberg-Petersen, K., and Mortensen, P.M. (2024). Electrified steam methane reforming of biogas for sustainable syngas manufacturing and next-generation of plant design: a pilot plant study. Chem. Eng. J. 479: 147205, https://doi.org/10.1016/j.cej.2023.147205.Search in Google Scholar

Ge, Q., Huang, Y., Qiu, F., and Li, S. (1998). Bifunctional catalysts for conversion of synthesis gas to dimethyl ether. Appl. Catal. Gen. 167: 23–30, https://doi.org/10.1016/s0926-860x(97)00290-1.Search in Google Scholar

Goldwasser, M., Rivas, M., Pietri, E., Pérez-Zurita, M., Cubeiro, M., Gingembre, L., Leclercq, L., and Leclercq, G. (2003). Perovskites as catalysts precursors: CO2 reforming of CH4 on Ln1−xCaxRu0.8Ni0.2O3 (Ln = La, Sn, Nd). Appl. Catal. Gen. 255: 45–57, https://doi.org/10.1016/s0926-860x(03)00643-4.Search in Google Scholar

Golosman, E.Z. and Efremov, V.N. (2012). Industrial catalysts for the hydrogenation of carbon oxides. Catal. Ind. 4: 267–283, https://doi.org/10.1134/s2070050412040071.Search in Google Scholar

Guo, J., Lou, H., Zhao, H., Chai, D., and Zheng, X. (2004). Dry reforming of methane over nickel catalysts supported on magnesium aluminate spinels. Appl. Catal. Gen. 273: 75–82, https://doi.org/10.1016/j.apcata.2004.06.014.Search in Google Scholar

Hamidzadeh, Z., Sattari, S., Soltanieh, M., and Vatani, A. (2020). Development of a multi-objective decision-making model to recover flare gases in a multi flare gases zone. Energy 203: 117815, https://doi.org/10.1016/j.energy.2020.117815.Search in Google Scholar

Harrison, G.H. and Sahel, A. (2023). Optimal profitable allocation of associated natural gas resource on a countrywide basis to mitigate flaring. Energy Rep. 10: 2551–2566, https://doi.org/10.1016/j.egyr.2023.09.015.Search in Google Scholar

Hinderaker, L. and Njaa, S. (2010). Proceedings of the SPE Russian oil and gas conference and exhibition, October, 2010: utilization of associated petroleum gas (APG) — the Norwegian experience.10.2118/136316-RUSearch in Google Scholar

Horn, R. and Schlögl, R. (2015). Methane activation by heterogeneous catalysis. Catal. Lett. 145: 23–39, https://doi.org/10.1007/s10562-014-1417-z.Search in Google Scholar

Hur, D.H., Nguyen, T.T., Kim, D., and Lee, E.Y. (2017). Selective bio-oxidation of propane to acetone using methane-oxidizing Methylomonas sp. DH-1. J. Ind. Microbiol. Biotechnol. 44: 1097–1105, https://doi.org/10.1007/s10295-017-1936-x.Search in Google Scholar PubMed

Hussain, I., Ganiyu, S.A., Alasiri, H., and Alhooshani, K. (2023). Catalytic technologies for direct oxidation of methane to methanol: a critical tutorial on current trends, future perspectives, and techno-feasibility assessment. Coord. Chem. Rev. 497: 215438, https://doi.org/10.1016/j.ccr.2023.215438.Search in Google Scholar

Ibitoye, F.I. (2014). Ending natural gas flaring in Nigeria’s oil fields. J. Sustain. Dev. 7: 13–22, https://doi.org/10.5539/jsd.v7n3p13.Search in Google Scholar

Ismagilov, Z.R., Khairulin, S.R., Filippov, A.G., Mazgarov, A.M., and Vildanov, A.F. (2017). Direct heterogeneous catalytic oxidation of hydrogen sulphide for associated petroleum gas treatment. Chem. Sustain. Dev. 25: 535–543.Search in Google Scholar

Ismail, O.S. and Umukoro, G.E. (2012). Global impact of gas Flaring. Energy Power Eng. 4: 290–302, https://doi.org/10.4236/epe.2012.44039.Search in Google Scholar

Ji, S.F., Xiao, T.C., Li, S.B., Xu, C.Z., Hou, R.L., Coleman, K.S., and Green, M.L.H. (2002). The relationship between the structure and the performance of Na-W-Mn/SiO2 catalysts for the oxidative coupling of methane. Appl. Catal. Gen. 225: 271–284, https://doi.org/10.1016/s0926-860x(01)00864-x.Search in Google Scholar

Ji, Y., Mao, G., Wang, Y., and Bartlam, M. (2013). Structural insights into diversity and n-alkane biodegradation mechanisms of alkane hydroxylases. Front. Microbiol. 4: 58, https://doi.org/10.3389/fmicb.2013.00058.Search in Google Scholar PubMed PubMed Central

Kalla, R. and Jansson, P. (2013). Converting low quality gas into a valuable power source. Wartsila Tech. J. 1: 61–65.Search in Google Scholar

Kang, S.H., Bae, J.W., Jun, K.W., and Potdar, H.S. (2008). Dimethyl ether synthesis from syngas over the composite catalysts of Cu–ZnO–Al2O3/Zr-modified zeolites. Catal. Commun. 9: 2035–2039, https://doi.org/10.1016/j.catcom.2008.03.046.Search in Google Scholar

Kapteijn, F. and Moulijn, J.A. (2022). Structured catalysts and reactors – perspectives for demanding applications. Catal. Today 383: 5–14, https://doi.org/10.1016/j.cattod.2020.09.026.Search in Google Scholar

Keshav, T.R. and Basu, S. (2007). Gas-to-liquid technologies: India’s perspective. Fuel Process. Technol 88: 493–500.10.1016/j.fuproc.2006.12.006Search in Google Scholar

Khakdaman, H.R. and Sadaghiani, K. (2007). Separation of catalyst particles and wax from effluent of a Fischer–Tropsch slurry reactor using supercritical hexane. Chem. Eng. Res. Des. 85: 263–268, https://doi.org/10.1205/cherd06034.Search in Google Scholar

Khaleel, A.T., Abutaqiya, M.I.L., Sisco, C.J., and Vargas, F.M. (2020). Mitigation of asphaltene deposition by re-injection of dead oil. Fluid Phase Equil. 514: 112552, https://doi.org/10.1016/j.fluid.2020.112552.Search in Google Scholar

Kidnay, A.J., Parrish, W.R., and McCartney, D.G. (2014). Fundamentals of natural gas processing, 2nd ed. Taylor &. Francis Group, Boca Raton, CRC Press.Search in Google Scholar

Kikhtyanin, O.V., Urzhuntsev, G.A., Dudarev, S.V., Toktarev, A.V., and Echevsky, G.V. (2007). Catalyst for aromatization of light hydrocarbons, method of its preparation and method for producing aromatic hydrocarbons, Application no. 2302291 (In Russian).Search in Google Scholar

Kopylov, A.Yu., Mazgarov, A.M., Kopylov, Yu.P., Mingazov, A.M., and Efremov, R.A. (2013). Proceedings of the international conference “catalytic processes of oil refining, petrochemistry and ecology”, October 14–16, 2013: modern technologies for the preparation and processing of hydrocarbon gases. Boreskov Institute of Catalysis SB RAS, Novosibirsk, (In Russian).Search in Google Scholar

Kumar, S., Kumar, S., and Prajapati, J.K. (2009). Hydrogen production by partial oxidation of methane: modeling and simulation. Int. J. Hydrogen Energy 34: 6655–6668, https://doi.org/10.1016/j.ijhydene.2009.06.043.Search in Google Scholar

Lange, J.P. (2001). Methanol synthesis: a short review of technology improvements. Catal. Today 64: 3–8, https://doi.org/10.1016/s0920-5861(00)00503-4.Search in Google Scholar

Latimer, A.A., Kakekhani, A., Kulkarni, A.R., and Nørskov, J.K. (2018). Direct methane to methanol: the selectivity-conversion limit and design strategies. ACS Catal. 8: 6894–6907, https://doi.org/10.1021/acscatal.8b00220.Search in Google Scholar

Li, D., Shishido, T., Oumi, Y., Sano, T., and Takehira, K. (2007). Self-activation and self-regenerative activity of trace Rh-doped Ni/Mg(Al)O catalysts in steam reforming of methane. Appl. Catal. Gen. 332: 98–109, https://doi.org/10.1016/j.apcata.2007.08.008.Search in Google Scholar

Mahlanen, T. and Karlsson, S. (2011). Method of operating a gas engine plant and fuel feeding system of a gas engine, Application no. 7866161.Search in Google Scholar

Mahmoudi, H., Mahmoudi, M., Doustdar, O., Jahangiri, H., Tsolakis, A., Gu, S., and Wyszynski, M.L. (2017). A review of Fischer Tropsch synthesis process, mechanism, surface chemistry and catalyst formulation. Biofuels Eng. 2: 11–31, https://doi.org/10.1515/bfuel-2017-0002.Search in Google Scholar

Makaryan, I.A., Salgansky, E.A., Arutyunov, V.S., and Sedov, I.V. (2023). Non-catalytic partial oxidation of hydrocarbon gases to syngas and hydrogen: a systematic review. Energies 16: 2916, https://doi.org/10.3390/en16062916.Search in Google Scholar

Mazloomi, K. and Gomes, C. (2012). Hydrogen as an energy carrier: prospects and challenges. Renew. Sustain. Energy Rev. 16: 3024–3033, https://doi.org/10.1016/j.rser.2012.02.028.Search in Google Scholar

Meleloe, K. and Walwyn, D. (2016). Success factors for the commercialisation of gas-to-liquids technology. S. Afr. J. Bus. Manag. 47: 63–72, https://doi.org/10.4102/sajbm.v47i3.69.Search in Google Scholar

Meuly, W.C. (1975). Process for the removal of hydrogen sulfide from gaseous streams by catalytic oxidation of hydrogen sulfide to sulfur while inhibiting the formation of sulfur oxides, application no. US4009251A.Search in Google Scholar

Mohammad, N., Bepari, S., Aravamudhan, S., and Kuila, D. (2019). Kinetics of Fischer–Tropsch synthesis in a 3-D printed stainless steel microreactor using different mesoporous silica supported Co-Ru catalysts. Catalysts 9: 872, https://doi.org/10.3390/catal9100872.Search in Google Scholar

Mohammad, N., Abrokwah, R.Y., Stevens-Boyd, R.G., Aravamudhan, S., and Kuila, D. (2020). Fischer-Tropsch studies in a 3D-printed stainless steel microchannel microreactor coated with cobalt-based bimetallic-MCM-41 catalysts. Catal. Today 358: 303–315, https://doi.org/10.1016/j.cattod.2020.02.020.Search in Google Scholar

Moon, D.J., Ryu, J.W., and Lee, S.D. (2004). Carbon dioxide reduction technology with SOFC system. In: Park, S.E., Chang, J.S., and Lee, K.W. (Eds.). Studies in surface science and catalysis, Vol. 153. Elsevier, Amsterdam, pp. 193–196.10.1016/S0167-2991(04)80246-5Search in Google Scholar

Moreno-Couranjou, M., Monthioux, M., Gonzalez-Aguilar, J., and Fulcheri, L. (2009). A non-thermal plasma process for the gas phase synthesis of carbon nanoparticles. Carbon 47: 2310–2321, https://doi.org/10.1016/j.carbon.2009.04.003.Search in Google Scholar

Neftegaz, R.U. (2013). Alternative comprehensive technologies for processing associated petroleum gases. Neftegaz.RU, (In Russian). Available at: <https://neftegaz.ru/science/booty/331950-alternativnye-kompleksnye-tekhnologii-pererabotki-poputnykh-neftyanykh-gazov/> (Accessed 22 March 2024).Search in Google Scholar

Nguyen, B.N.T. and Leclerc, C.A. (2008). Catalytic partial oxidation of methyl acetate as a model to investigate the conversion of methyl esters to hydrogen. Int. J. Hydrogen Energy 33: 1295–1303, https://doi.org/10.1016/j.ijhydene.2007.11.024.Search in Google Scholar

Nguyen, T.T., Hwang, I.Y., Na, J.G., and Lee, E.Y. (2019). Biological conversion of propane to 2-propanol using group I and II methanotrophs as biocatalysts. J. Ind. Microbiol. Biotechnol. 46: 675–685, https://doi.org/10.1007/s10295-019-02141-1.Search in Google Scholar PubMed

Nikitin, A.V., Ozerskii, A.V., Afaunov, A.A., Sedov, I.V., Savchenko, V.I., and Arutyunov, V.S. (2018). Effect of hydrogen addition on oxidative cracking of ethane. Russ. J. Appl. Chem. 91: 1767–1772, https://doi.org/10.1134/s1070427218110058.Search in Google Scholar

NIPIgazpererabotka (2014). Preparation and processing of associated petroleum gas in Russia. PJSC “NIPIgazpererabotka”, Krasnodar, Russia.Search in Google Scholar

Novochinskii, I.I., Song, C., Ma, X., Liu, X., Shore, L., Lampert, J., and Farrauto, R.J. (2004). Low-temperature H2S removal from steam-containing gas mixtures with ZnO for fuel cell application. 1. ZnO particles and extrudates. Energy Fuel. 18: 576–583, https://doi.org/10.1021/ef030137l.Search in Google Scholar

Oder, R.R. (2007). Magnetic separation of nanometer size iron catalyst from Fischer-Tropsch wax. Stud. Surf. Sci. Catal. 163: 337–344, https://doi.org/10.1016/s0167-2991(07)80487-3.Search in Google Scholar

Oh, S.H., Hwang, I.Y., Lee, O.K., Won, W., and Lee, E.Y. (2019). Development and optimization of the biological conversion of ethane to ethanol using whole-cell methanotrophs possessing methane monooxygenase. Molecules 24: 1–9, https://doi.org/10.3390/molecules24030591.Search in Google Scholar PubMed PubMed Central

Ozerskii, A.V., Nikitin, A.V., Sedov, I.V., Fokin, I.G., Savchenko, V.I., and Arutyunov, V.S. (2018). Production of ethylene, CO, and hydrogen by oxidative cracking of oil refinery gas components. Russ. J. Appl. Chem. 91: 2065–2075, https://doi.org/10.1134/s1070427218120200.Search in Google Scholar

Pakhare, D. and Spivey, J. (2014). A review of dry (CO2) reforming of methane over noble metal catalysts. Chem. Soc. Rev. 43: 7813–7837, https://doi.org/10.1039/c3cs60395d.Search in Google Scholar PubMed

Parfenov, V.E., Nikitchenko, N.V., Pimenov, A.A., Kuzmin, A., Kulikova, M., Chupichev, O.B., and Maksimov, A.L. (2020). Methane pyrolysis for hydrogen production: specific features of using molten metals. Russ. J. Appl. Chem. 93: 625–632, https://doi.org/10.1134/s1070427220050018.Search in Google Scholar

Park, S., Jung, I., Lee, Y., Kshetrimayum, K.S., Na, J., Park, S., Shin, S., Ha, D., Lee, Y., Chung, J., et al.. (2016). Design of microchannel Fischer–Tropsch reactor using cell-coupling method: effect of flow configurations and distribution. Chem. Eng. Sci. 143: 63–75, https://doi.org/10.1016/j.ces.2015.12.012.Search in Google Scholar

PFC Energy (2007). Using Russia’s associated gas, Available at: <https://documents1.worldbank.org/curated/fr/919941468092955282/pdf/713820WP0P10230C00pfc0energy0report.pdf> (Accessed 29 March 2024).Search in Google Scholar

Potemkin, D.I., Uskov, S.I., Brayko, A.S., Pakharukova, V.P., Snytnikov, P.V., Kirillov, V.A., and Sobyanin, V.A. (2021). Flare gases processing over highly dispersed Ni/Ce0.75Zr0.25O2 catalysts for methanotroph-based biorefinery. Catal. Today 379: 205–211, https://doi.org/10.1016/j.cattod.2020.06.070.Search in Google Scholar

Putrasari, Y. and Lim, O. (2021). Dimethyl ether as the next generation fuel to control nitrogen oxides and particulate matter emissions from internal combustion engines: a review. ACS Omega 7: 32–37, https://doi.org/10.1021/acsomega.1c03885.Search in Google Scholar PubMed PubMed Central

Qi, A., Wang, S., Ni, C., and Wu, D. (2007). Autothermal reforming of gasoline on Rh-based monolithic catalysts. Int. J. Hydrogen Energy 32: 981–991, https://doi.org/10.1016/j.ijhydene.2006.06.072.Search in Google Scholar

Recupero, V., Pino, L., Di, L.R., Lagana, M., and Maggio, G. (1998). Hydrogen generator, via catalytic partial oxidation of methane for fuel cells. J. Power Sources 71: 208–214, https://doi.org/10.1016/s0378-7753(97)02798-5.Search in Google Scholar

Rollmann, L. (1972). Process of converting aliphatics to aromatics, Application no. 3761389.Search in Google Scholar

Rostrup-Nielsen, J.R. (Ed.) (1984). Catalytic steam reforming. Springer, Berlin.10.1007/978-3-642-93247-2_1Search in Google Scholar

Rostrup-Nielsen, J.R. and Christiansen, L.J. (2011). Concepts in syngas manufacture, 10th ed. Imperial College Press, London.10.1142/9781848165687Search in Google Scholar

Savchenko, V.I., Arutyunov, V.S., Fokin, I.G., Nikitin, A.V., and Sedov, I.V. (2017). Adjustment of the fuel characteristics of wet and associated petroleum gases by partial oxidation of C2+ hydrocarbons. Petrol. Chem. 57: 236–243, https://doi.org/10.1134/s0965544117020232.Search in Google Scholar

Schwarz, H. (2011). Chemistry with methane: concepts rather than recipes. Angew. Chem., Int. Ed. 50: 10096–10115, https://doi.org/10.1002/anie.201006424.Search in Google Scholar PubMed

Seo, Y.S., Shirley, A., and Kolaczkowski, S.T. (2002). Evaluation of thermodynamically favourable operating conditions for production of hydrogen in three different reforming technologies. J. Power Sources 108: 213–215, https://doi.org/10.1016/s0378-7753(02)00027-7.Search in Google Scholar

Shikada, T., Ohno, Y., Ogawa, T., Ono, M., Mizuguchi, M., Tomura, K., and Fujimoto, K. (1998). Direct synthesis of dimethyl ether form synthesis gas. Stud. Surf. Sci. Catal. 119: 515–520, https://doi.org/10.1016/s0167-2991(98)80483-7.Search in Google Scholar

Sierra, I., Eren, J., Aguayo, A.T., Arandes, J.M., and Bilbao, J. (2010). Regeneration of CuO-ZnO-Al2O3/γ-Al2O3 catalyst in the direct synthesis of dimethyl ether. Appl. Catal. B Environ. 94: 108–116, https://doi.org/10.1016/j.apcatb.2009.10.026.Search in Google Scholar

Simeone, M., Salemme, L., Scognamiglio, D., Allouis, C., and Volpicelli, G. (2008). Effect of water addition and stoichiometry variations on temperature profiles in an autothermal methane reforming reactor with Ni catalyst. Int. J. Hydrogen Energy 33: 1252–1261, https://doi.org/10.1016/j.ijhydene.2007.12.034.Search in Google Scholar

Smith, C., Hill, A.K., and Torrente-Murciano, L. (2020). Current and future role of Haber–Bosch ammonia in a carbon-free energy landscape. Energy Environ. Sci. 13: 331–344, https://doi.org/10.1039/c9ee02873k.Search in Google Scholar

Snytnikov, P. and Potemkin, D. (2022). Flare gas monetization and greener hydrogen production via combination with cryptocurrency mining and carbon dioxide capture. iScience 25: 103769, https://doi.org/10.1016/j.isci.2022.103769.Search in Google Scholar PubMed PubMed Central

Snytnikov, P.V., Potemkin, D.I., Uskov, S.I., Kurochkin, A.V., Kirillov, V.A., and Sobyanin, V.A. (2018). Approaches to utilizing flare gases at oil and gas fields: a review. Catal. Ind. 10: 202–216, https://doi.org/10.1134/s207005041803011x.Search in Google Scholar

Sobolev, V.I., Dubkov, K.A., Panna, O.V., and Panov, G.I. (1995). Selective oxidation of methane to methanol on a FeZSM-5 surface. Catal. Today 24: 251–252, https://doi.org/10.1016/0920-5861(95)00035-e.Search in Google Scholar

Soltanieh, M., Zohrabian, A., Gholipour, M.J., and Kalnay, E. (2016). A review of global gas flaring and venting and impact on the environment: case study of Iran. Int. J. Greenh. Gas Control 49: 488–509, https://doi.org/10.1016/j.ijggc.2016.02.010.Search in Google Scholar

Steacy, P.C. (1984a). Dehydrocyclodimerization process, Application no. 4528412.Search in Google Scholar

Steacy, P.C. (1984b). Dehydrocyclodimerization process, Application no. 4547205.Search in Google Scholar

Strong, P.J., Kalyuzhnaya, M., Silverman, J., and Clarke, W.P. (2016). A methanotroph-based biorefinery: potential scenarios for generating multiple products from a single fermentation. Bioresour. Technol. 215: 314–323, https://doi.org/10.1016/j.biortech.2016.04.099.Search in Google Scholar PubMed

Tao, X., Bai, M., Li, X., Long, H., Shang, S., Yin, Y., and Dai, X. (2011). CH4-CO2 reforming by plasma – challenges and opportunities. Prog. Energy Combust. Sci. 37: 113–124, https://doi.org/10.1016/j.pecs.2010.05.001.Search in Google Scholar

Todić, B., Ordomsky, V.V., Nikačević, N.M., Khodakov, A.Y., and Bukur, D.B. (2015). Opportunities for intensification of Fischer–Tropsch synthesis through reduced formation of methane over cobalt catalysts in microreactors. Catal. Sci. Technol. 5: 1400–1411, https://doi.org/10.1039/c4cy01547a.Search in Google Scholar

Tu, X. and Whitehead, J.C. (2012). Plasma-catalytic dry reforming of methane in an atmospheric dielectric barrier discharge: understanding the synergistic effect at low temperature. Appl. Catal. B Environ. 125: 439–448, https://doi.org/10.1016/j.apcatb.2012.06.006.Search in Google Scholar

Tu, X. and Whitehead, J.C. (2014). Plasma dry reforming of methane in an atmospheric pressure AC gliding arc discharge: co-generation of syngas and carbon nanomaterials. Int. J. Hydrogen Energy 39: 9658–9669, https://doi.org/10.1016/j.ijhydene.2014.04.073.Search in Google Scholar

Urasaki, K., Sekine, Y., Kawabe, S., Kikuchi, E., and Matsuka-ta, M. (2005). Catalytic activities and coking resistance of Ni/perovskites in steam reforming of methane. Appl. Catal. Gen. 286: 23–29, https://doi.org/10.1016/j.apcata.2005.02.020.Search in Google Scholar

Uskov, S.I., Potemkin, D.I., Shigarov, A.B., Snytnikov, P.V., Kirillov, V.A., and Sobyanin, V.A. (2019). Low-temperature steam conversion of flare gases for various applications. Chem. Eng. J. 368: 533–540, https://doi.org/10.1016/j.cej.2019.02.189.Search in Google Scholar

Visconti, C.G., Panzeri, M., Groppi, G., and Tronconi, E. (2024). Heat transfer intensification in compact tubular reactors with cellular internals: a pilot-scale assessment of highly conductive packed-POCS with skin applied to the Fischer-Tropsch synthesis. Chem. Eng. J. 481: 148469, https://doi.org/10.1016/j.cej.2023.148469.Search in Google Scholar

VNIIGAZ (All-Union Scientific Research Institute of Natural Gases and Gas Technologies) (2000). Electrical units with piston and gas turbine drives running on natural gas for small power plants, Collection of industry normative documents. VNIIGAZ, Saint-Petersburg, Russia, (In Russian).Search in Google Scholar

Vovk, V.S., Zaichenko, V.M., and Krylova, A.U. (2019). New direction of associated petroleum gas utilization. Oil Ind. J. 2019: 94–97, https://doi.org/10.24887/0028-2448-2019-10-94-97.Search in Google Scholar

Wang, J., Li, G., Li, Z., Tang, C., Feng, Z., An, H., Liu, H., Liu, T., and Li, C. (2017a). A highly selective and stable ZnO-ZrO2 solid solution catalyst for CO2 hydrogenation to methanol. Sci. Adv. 3: e1701290, https://doi.org/10.1126/sciadv.1701290.Search in Google Scholar PubMed PubMed Central

Wang, V.C.-C., Maji, S., Chen, P.P.-Y., Lee, H.K., Yu, S.S.-F., and Chan, S.I. (2017b). Alkane oxidation: methane monooxygenases, related enzymes, and their biomimetics. Chem. Rev. 117: 8574–8621, https://doi.org/10.1021/acs.chemrev.6b00624.Search in Google Scholar PubMed

Wismann, S.T., Engbæk, J.S., Vendelbo, S.B., Bendixen, F.B., Eriksen, W.L., Aasberg-Petersen, K., Frandsen, C.K., Chorkendorff, I., and Mortensen, P.M. (2019a). Electrified methane reforming: a compact approach to greener industrial hydrogen production. Science 364: 756–759, https://doi.org/10.1126/science.aaw8775.Search in Google Scholar PubMed

Wismann, S.T., Engbæk, J.S., Vendelbo, S.B., Eriksen, W.L., Frandsen, C., Mortensen, P.M., and Chorkendorff, I. (2019b). Electrified methane reforming: understanding the dynamic interplay. Ind. Eng. Chem. Res. 58: 23380–23388, https://doi.org/10.1021/acs.iecr.9b04182.Search in Google Scholar

Wismann, S.T., Engbæk, J.S., Vendelbo, S.B., Eriksen, W.L., Frandsen, C., Mortensen, P.M., and Chorkendorff, I. (2021). Electrified methane reforming: elucidating transient phenomena. Chem. Eng. J. 425: 131509, https://doi.org/10.1016/j.cej.2021.131509.Search in Google Scholar

World Bank (2022). Global gas flaring data. Available at: https://www.worldbank.org/en/programs/gasflaringreduction/global-flaring-data (Accessed 11 March 2024).Search in Google Scholar

Xu, Z., Li, Y., Zhang, J., Chang, L., Zhou, R., and Duan, Z. (2001). Bound-state Ni species – a superior form in Ni-based catalyst for CH4/CO2 reforming. Appl. Catal. Gen. 210: 45–53, https://doi.org/10.1016/s0926-860x(00)00798-5.Search in Google Scholar

Yashnik, S.A., Salnikov, A.V., Kerzhentsev, M.A., Saraev, A.A., Kaichev, V.V., Khitsova, L.M., Ismagilov, Z.R., Yamin, J., and Koseoglu, O.R. (2016). Effect of the nature of sulfur compounds on their reactivity in the oxidative desulfurization of hydrocarbon fuels with oxygen over a modified CuZnAlO catalyst. Kinet. Catal. 58: 58–72, https://doi.org/10.1134/s0023158417010128.Search in Google Scholar

Zhang, J., Feng, Z., Jia, X., Liang, M., Men, Z., Zhang, Y., Bu, Y., and Li, W. (2013). High gradient magnetic separation of catalyst/wax mixture in Fischer–Tropsch synthesis: modeling and experimental study. Chem. Eng. Sci. 99: 28–37, https://doi.org/10.1016/j.ces.2013.05.005.Search in Google Scholar

Zhang, F., Zhao, P., Niu, M., and Maddy, J. (2016). The survey of key technologies in hydrogen energy storage. Int. J. Hydrogen Energy 41: 14535–14552, https://doi.org/10.1016/j.ijhydene.2016.05.293.Search in Google Scholar

Zheng, X., Yumin, L., Jiyan, Z., Liu, C., Rongqi, Z., and Zhanting, D. (2001). Bound-state Ni species – a superior form in Ni-based catalyst for CH4/CO2 reforming. Appl. Catal. Gen. 210: 45–53, https://doi.org/10.1016/s0926-860x(00)00798-5.Search in Google Scholar

Zyryanova, M.M., Snytnikov, P.V., Amosov, Yu. I., Belyaev, V.D., Kireenkov, V.V., Kuzin, N.A., Vernikovskaya, M.V., Kirillov, V.A., and Sobyanin, V.A. (2013). Upgrading of associated petroleum gas into methane-rich gas for power plant feeding applications. Technological and economic benefits. Fuel 108: 282–291, https://doi.org/10.1016/j.fuel.2013.02.047.Search in Google Scholar

Received: 2023-12-04
Accepted: 2024-04-17
Published Online: 2024-05-08

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 12.6.2024 from https://www.degruyter.com/document/doi/10.1515/revce-2023-0068/html
Scroll to top button