paper The following article is Open access

The separate-universe approach and sudden transitions during inflation

, , , , and

Published 9 May 2024 © 2024 The Author(s)
, , Citation Joseph H.P. Jackson et al JCAP05(2024)053 DOI 10.1088/1475-7516/2024/05/053

1475-7516/2024/05/053

Abstract

The separate-universe approach gives an intuitive way to understand the evolution of cosmological perturbations in the long-wavelength limit. It uses solutions of the spatially-homogeneous equations of motion to model the evolution of the inhomogeneous universe on large scales. We show that the separate-universe approach fails on a finite range of super-Hubble scales at a sudden transition from slow roll to ultra-slow roll during inflation in the very early universe. Such transitions are a feature of inflation models giving a large enhancement in the primordial power spectrum on small scales, necessary to produce primordial black holes after inflation. We show that the separate-universe approach still works in a piece-wise fashion, before and after the transition, but spatial gradients on finite scales require a discontinuity in the homogeneous solution at the transition. We discuss the implications for the δN formalism and stochastic inflation, which employ the separate-universe approximation.

Export citation and abstract BibTeX RIS

Published by IOP Publishing Ltd on behalf of Sissa Medialab. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.