Skip to main content
Log in

Connexin 43 modulates reverse electron transfer in cardiac mitochondria from inducible knock-out Cx43Cre−ER(T)/fl mice by altering the coenzyme Q pool

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Succinate accumulates during myocardial ischemia and is rapidly oxidized during reperfusion, leading to reactive oxygen species (ROS) production through reverse electron transfer (RET) from mitochondrial complex II to complex I, and favoring cell death. Given that connexin 43 (Cx43) modulates mitochondrial ROS production, we investigated whether Cx43 influences RET using inducible knock-out Cx43Cre−ER(T)/fl mice. Oxygen consumption, ROS production, membrane potential and coenzyme Q (CoQ) pool were analyzed in subsarcolemmal (SSM, expressing Cx43) and interfibrillar (IFM) cardiac mitochondria isolated from wild-type Cx43fl/fl mice and Cx43Cre−ER(T)/fl knock-out animals treated with 4-hydroxytamoxifen (4OHT). In addition, infarct size was assessed in isolated hearts from these animals submitted to ischemia–reperfusion (IR), and treated or not with malonate, a complex II inhibitor attenuating RET. Succinate-dependent ROS production and RET were significantly lower in SSM, but not IFM, from Cx43-deficient animals. Mitochondrial membrane potential, a RET driver, was similar between groups, whereas CoQ pool (2.165 ± 0.338 vs. 4.18 ± 0.55 nmol/mg protein, p < 0.05) and its reduction state were significantly lower in Cx43-deficient animals. Isolated hearts from Cx43Cre−ER(T)/fl mice treated with 4OHT had a smaller infarct size after IR compared to Cx43fl/fl, despite similar concentration of succinate at the end of ischemia, and no additional protection by malonate. Cx43 deficiency attenuates ROS production by RET in SSM, but not IFM, and was associated with a decrease in CoQ levels and a change in its redox state. These results may partially explain the reduced infarct size observed in these animals and their lack of protection by malonate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings are available within the paper. Any remaining data that support the results of the study will be available from the corresponding authors upon reasonable request.

References

  1. Alam MS (2018) Proximity ligation assay (PLA). Curr Protoc Immunol 123:e58. https://doi.org/10.1002/cpim.58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Anastacio MM, Kanter EM, Makepeace C, Keith AD, Zhang H, Schuessler RB, Nichols CG, Lawton JS (2013) Cardioprotective mechanism of diazoxide involves the inhibition of succinate dehydrogenase. Ann Thorac Surg 95:2042–2050. https://doi.org/10.1016/j.athoracsur.2013.03.035

    Article  PubMed  PubMed Central  Google Scholar 

  3. Arroyo A, Kagan VE, Tyurin VA, Burgess JR, de Cabo R, Navas P, Villalba JM (2000) NADH and NADPH-dependent reduction of coenzyme Q at the plasma membrane. Antioxid Redox Signal 2:251–262. https://doi.org/10.1089/ars.2000.2.2-251

    Article  CAS  PubMed  Google Scholar 

  4. Awad K, Sayed A, Banach M (2022) Coenzyme Q10 reduces infarct size in animal models of myocardial ischemia-reperfusion injury: a meta-analysis and summary of underlying mechanisms. Front Cardiovasc Med 9:857364. https://doi.org/10.3389/fcvm.2022.857364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Basheer WA, Fu Y, Shimura D, Xiao S, Agvanian S, Hernandez DM, Hitzeman TC, Hong T, Shaw RM (2018) Stress response protein GJA1-20k promotes mitochondrial biogenesis, metabolic quiescence, and cardioprotection against ischemia/reperfusion injury. JCI Insight 3. https://doi.org/10.1172/jci.insight.121900

  6. Boengler K, Dodoni G, Rodriguez-Sinovas A, Cabestrero A, Ruiz-Meana M, Gres P, Konietzka I, Lopez-Iglesias C, Garcia-Dorado D, Di Lisa F, Heusch G, Schulz R (2005) Connexin 43 in cardiomyocyte mitochondria and its increase by ischemic preconditioning. Cardiovasc Res 67:234–244. https://doi.org/10.1016/j.cardiores.2005.04.014

    Article  CAS  PubMed  Google Scholar 

  7. Boengler K, Heusch G, Schulz R (2006) Connexin 43 and ischemic preconditioning: effects of age and disease. Exp Gerontol 41:485–488. https://doi.org/10.1016/j.exger.2006.01.011

    Article  CAS  PubMed  Google Scholar 

  8. Boengler K, Konietzka I, Buechert A, Heinen Y, Garcia-Dorado D, Heusch G, Schulz R (2007) Loss of ischemic preconditioning’s cardioprotection in aged mouse hearts is associated with reduced gap junctional and mitochondrial levels of connexin 43. Am J Physiol Heart Circ Physiol 292:H1764–H1769. https://doi.org/10.1152/ajpheart.01071.2006

    Article  CAS  PubMed  Google Scholar 

  9. Boengler K, Ruiz-Meana M, Gent S, Ungefug E, Soetkamp D, Miro-Casas E, Cabestrero A, Fernandez-Sanz C, Semenzato M, Di Lisa F, Rohrbach S, Garcia-Dorado D, Heusch G, Schulz R (2012) Mitochondrial connexin 43 impacts on respiratory complex I activity and mitochondrial oxygen consumption. J Cell Mol Med 16:1649–1655. https://doi.org/10.1111/j.1582-4934.2011.01516.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Boengler K, Stahlhofen S, van de Sand A, Gres P, Ruiz-Meana M, Garcia-Dorado D, Heusch G, Schulz R (2009) Presence of connexin 43 in subsarcolemmal, but not in interfibrillar cardiomyocyte mitochondria. Basic Res Cardiol 104:141–147. https://doi.org/10.1007/s00395-009-0007-5

    Article  CAS  PubMed  Google Scholar 

  11. Boengler K, Ungefug E, Heusch G, Leybaert L, Schulz R (2013) Connexin 43 impacts on mitochondrial potassium uptake. Front Pharmacol 4:73. https://doi.org/10.3389/fphar.2013.00073

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bou-Teen D, Fernandez-Sanz C, Miro-Casas E, Nichtova Z, Bonzon-Kulichenko E, Casós K, Inserte J, Rodriguez-Sinovas A, Benito B, Sheu SS, Vázquez J, Ferreira-González I, Ruiz-Meana M (2022) Defective dimerization of FoF1-ATP synthase secondary to glycation favors mitochondrial energy deficiency in cardiomyocytes during aging. Aging Cell 21:e13564. https://doi.org/10.1111/acel.13564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Burger N, Logan A, Prime TA, Mottahedin A, Caldwell ST, Krieg T, Hartley RC, James AM, Murphy MP (2020) A sensitive mass spectrometric assay for mitochondrial CoQ pool redox state in vivo. Free Radic Biol Med 147:37–47. https://doi.org/10.1016/j.freeradbiomed.2019.11.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen YR, Zweier JL (2014) Cardiac mitochondria and reactive oxygen species generation. Circ Res 114:524–537. https://doi.org/10.1161/CIRCRESAHA.114.300559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chouchani ET, Pell VR, Gaude E, Aksentijevic D, Sundier SY, Robb EL, Logan A, Nadtochiy SM, Ord EN, Smith AC, Eyassu F, Shirley R, Hu CH, Dare AJ, James AM, Rogatti S, Hartley RC, Eaton S, Costa AS, Brookes PS, Davidson SM, Duchen MR, Saeb-Parsy K, Shattock MJ, Robinson AJ, Work LM, Frezza C, Krieg T, Murphy MP (2014) Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 515:431–435. https://doi.org/10.1038/nature13909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Depre C, Vatner SF (2007) Cardioprotection in stunned and hibernating myocardium. Heart Fail Rev 12:307–317. https://doi.org/10.1007/s10741-007-9040-3

    Article  CAS  PubMed  Google Scholar 

  17. Diez ER, Sanchez JA, Prado NJ, Ponce Zumino AZ, Garcia-Dorado D, Miatello RM, Rodriguez-Sinovas A (2019) Ischemic postconditioning reduces reperfusion arrhythmias by adenosine receptors and protein kinase C activation but is independent of K(ATP) channels or connexin 43. Int J Mol Sci 20:5927. https://doi.org/10.3390/ijms20235927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fernandez-Sanz C, Ruiz-Meana M, Castellano J, Miro-Casas E, Nunez E, Inserte J, Vazquez J, Garcia-Dorado D (2015) Altered FoF1 ATP synthase and susceptibility to mitochondrial permeability transition pore during ischaemia and reperfusion in aging cardiomyocytes. Thromb Haemost 113. https://doi.org/10.1160/TH14-10-0901

  19. Gadicherla AK, Wang N, Bulic M, Agullo-Pascual E, Lissoni A, De Smet M, Delmar M, Bultynck G, Krysko DV, Camara A, Schluter KD, Schulz R, Kwok WM, Leybaert L (2017) Mitochondrial Cx43 hemichannels contribute to mitochondrial calcium entry and cell death in the heart. Basic Res Cardiol 112:27. https://doi.org/10.1007/s00395-017-0618-1

    Article  CAS  PubMed  Google Scholar 

  20. Garcia-Dorado D, Rodriguez-Sinovas A, Ruiz-Meana M (2004) Gap junction-mediated spread of cell injury and death during myocardial ischemia-reperfusion. Cardiovasc Res 61:386–401. https://doi.org/10.1016/j.cardiores.2003.11.039

    Article  CAS  PubMed  Google Scholar 

  21. Garcia-Dorado D, Ruiz-Meana M, Inserte J, Rodriguez-Sinovas A, Piper HM (2012) Calcium-mediated cell death during myocardial reperfusion. Cardiovasc Res 94:168–180. https://doi.org/10.1093/cvr/cvs116

    Article  CAS  PubMed  Google Scholar 

  22. Granger DN, Kvietys PR (2015) Reperfusion injury and reactive oxygen species: the evolution of a concept. Redox Biol 6:524–551. https://doi.org/10.1016/j.redox.2015.08.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Halestrap AP, Richardson AP (2015) The mitochondrial permeability transition: a current perspective on its identity and role in ischaemia/reperfusion injury. J Mol Cell Cardiol 78:129–141. https://doi.org/10.1016/j.yjmcc.2014.08.018

    Article  CAS  PubMed  Google Scholar 

  24. Hano O, Thompson-Gorman SL, Zweier JL, Lakatta EG (1994) Coenzyme Q10 enhances cardiac functional and metabolic recovery and reduces Ca2+ overload during postischemic reperfusion. Am J Physiol 266:H2174-2181. https://doi.org/10.1152/ajpheart.1994.266.6.H2174

    Article  CAS  PubMed  Google Scholar 

  25. Heinzel FR, Luo Y, Li X, Boengler K, Buechert A, Garcia-Dorado D, Di Lisa F, Schulz R, Heusch G (2005) Impairment of diazoxide-induced formation of reactive oxygen species and loss of cardioprotection in connexin 43 deficient mice. Circ Res 97:583–586. https://doi.org/10.1161/01.RES.0000181171.65293.65

    Article  CAS  PubMed  Google Scholar 

  26. Heusch G, Buchert A, Feldhaus S, Schulz R (2006) No loss of cardioprotection by postconditioning in connexin 43-deficient mice. Basic Res Cardiol 101:354–356. https://doi.org/10.1007/ss00395-006-0589-0

    Article  CAS  PubMed  Google Scholar 

  27. Heusch G, Andreadou I, Bell R, Bertero E, Botker H-E, Davidson SM, Downey J, Eaton P, Ferdinandy P, Gersh BJ, Giacca M, Hausenloy DJ, Ibanez B, Krieg T, Maack C, Schulz R, Sellke F, Shah AM, Thiele H, Yellon DM, Di Lisa F (2023) Health position paper and redox perspectives on reactive oxygen species as signals and targets of cardioprotection. Redox Biol 67:102894. https://doi.org/10.1016/j.redox.2023.102894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hirschhauser C, Lissoni A, Gorge PM, Lampe PD, Heger J, Schluter KD, Leybaert L, Schulz R, Boengler K (2021) Connexin 43 phosphorylation by casein kinase 1 is essential for the cardioprotection by ischemic preconditioning. Basic Res Cardiol 116:21. https://doi.org/10.1007/s00395-021-00861-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Holmstrom KM, Finkel T (2014) Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol 15:411–421. https://doi.org/10.1038/nrm3801

    Article  CAS  PubMed  Google Scholar 

  30. Jarmuszkiewicz W, Dominiak K, Galganski L, Galganska H, Kicinska A, Majerczak J, Zoladz JA (2020) Lung mitochondria adaptation to endurance training in rats. Free Radic Biol Med 161:163–174. https://doi.org/10.1016/j.freeradbiomed.2020.10.011

    Article  CAS  PubMed  Google Scholar 

  31. Kelly RF, Sluiter W, McFalls EO (2008) Hibernating myocardium: is the program to survive a pathway to failure? Circ Res 102:3–5. https://doi.org/10.1161/CIRCRESAHA.107.168278

    Article  CAS  PubMed  Google Scholar 

  32. Kula-Alwar D, Prag HA, Krieg T (2019) Targeting succinate metabolism in ischemia/reperfusion injury. Circulation 140:1968–1970. https://doi.org/10.1161/CIRCULATIONAHA.119.042791

    Article  CAS  PubMed  Google Scholar 

  33. Miro-Casas E, Ruiz-Meana M, Agullo E, Stahlhofen S, Rodriguez-Sinovas A, Cabestrero A, Jorge I, Torre I, Vazquez J, Boengler K, Schulz R, Heusch G, Garcia-Dorado D (2009) Connexin43 in cardiomyocyte mitochondria contributes to mitochondrial potassium uptake. Cardiovasc Res 83:747–756. https://doi.org/10.1093/cvr/cvp157

    Article  CAS  PubMed  Google Scholar 

  34. Nicholls DG, Ferguson SJ (2013). In: Bioenergetics, 4 ed. Academic Press, Boston

  35. Prag HA, Aksentijevic D, Dannhorn A, Giles AV, Mulvey JF, Sauchanka O, Du L, Bates G, Reinhold J, Kula-Alwar D, Xu Z, Pellerin L, Goodwin RJA, Murphy MP, Krieg T (2022) Ischemia-selective cardioprotection by malonate for ischemia/reperfusion injury. Circ Res 131:528–541. https://doi.org/10.1161/CIRCRESAHA.121.320717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Prag HA, Pala L, Kula-Alwar D, Mulvey JF, Luping D, Beach TE, Booty LM, Hall AR, Logan A, Sauchanka V, Caldwell ST, Robb EL, James AM, Xu Z, Saeb-Parsy K, Hartley RC, Murphy MP, Krieg T (2022) Ester prodrugs of malonate with enhanced intracellular delivery protect against cardiac ischemia-reperfusion injury in vivo. Cardiovasc Drugs Ther 36:1–13. https://doi.org/10.1007/s10557-020-07033-6

    Article  CAS  PubMed  Google Scholar 

  37. Rodriguez-Sinovas A, Boengler K, Cabestrero A, Gres P, Morente M, Ruiz-Meana M, Konietzka I, Miro E, Totzeck A, Heusch G, Schulz R, Garcia-Dorado D (2006) Translocation of connexin 43 to the inner mitochondrial membrane of cardiomyocytes through the heat shock protein 90-dependent TOM pathway and its importance for cardioprotection. Circ Res 99:93–101. https://doi.org/10.1161/01.RES.0000230315.56904.de

    Article  CAS  PubMed  Google Scholar 

  38. Rodriguez-Sinovas A, Sanchez JA, Gonzalez-Loyola A, Barba I, Morente M, Aguilar R, Agullo E, Miro-Casas E, Esquerda N, Ruiz-Meana M, Garcia-Dorado D (2010) Effects of substitution of Cx43 by Cx32 on myocardial energy metabolism, tolerance to ischemia and preconditioning protection. J Physiol 588:1139–1151. https://doi.org/10.1113/jphysiol.2009.186577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rodriguez-Sinovas A, Ruiz-Meana M, Denuc A, Garcia-Dorado D (2018) Mitochondrial Cx43, an important component of cardiac preconditioning. Biochim Biophys Acta 1860:174–181. https://doi.org/10.1016/j.bbamem.2017.06.011

    Article  CAS  Google Scholar 

  40. Rodríguez-Sinovas A, Sánchez JA, Valls-Lacalle L, Consegal M, Ferreira-González I (2021) Connexins in the heart: regulation, function and involvement in cardiac disease. Int J Mol Sci 22:4413. https://doi.org/10.3390/ijms22094413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ruiz-Meana M, Inserte J, Fernandez-Sanz C, Hernando V, Miro-Casas E, Barba I, Garcia-Dorado D (2011) The role of mitochondrial permeability transition in reperfusion-induced cardiomyocyte death depends on the duration of ischemia. Basic Res Cardiol 106:1259–1268. https://doi.org/10.1007/s00395-011-0225-5

    Article  CAS  PubMed  Google Scholar 

  42. Ruiz-Meana M, Rodriguez-Sinovas A, Cabestrero A, Boengler K, Heusch G, Garcia-Dorado D (2008) Mitochondrial connexin43 as a new player in the pathophysiology of myocardial ischaemia-reperfusion injury. Cardiovasc Res 77:325–333. https://doi.org/10.1093/cvr/cvm062

    Article  CAS  PubMed  Google Scholar 

  43. Sanchez JA, Rodriguez-Sinovas A, Barba I, Miro-Casas E, Fernandez-Sanz C, Ruiz-Meana M, Alburquerque-Bejar JJ, Garcia-Dorado D (2013) Activation of RISK and SAFE pathways is not involved in the effects of Cx43 deficiency on tolerance to ischemia-reperfusion injury and preconditioning protection. Basic Res Cardiol 108:351. https://doi.org/10.1007/s00395-013-0351-3

    Article  CAS  PubMed  Google Scholar 

  44. Sanchez JA, Rodriguez-Sinovas A, Fernandez-Sanz C, Ruiz-Meana M, Garcia-Dorado D (2011) Effects of a reduction in the number of gap junction channels or in their conductance on ischemia-reperfusion arrhythmias in isolated mouse hearts. Am J Physiol Heart Circ Physiol 301:H2442–H2453. https://doi.org/10.1152/ajpheart.00540.2011

    Article  CAS  PubMed  Google Scholar 

  45. Schulz R, Boengler K, Totzeck A, Luo Y, Garcia-Dorado D, Heusch G (2007) Connexin 43 in ischemic pre- and postconditioning. Heart Fail Rev 12:261–266. https://doi.org/10.1007/s10741-007-9032-3

    Article  CAS  PubMed  Google Scholar 

  46. Schwanke U, Konietzka I, Duschin A, Li X, Schulz R, Heusch G (2002) No ischemic preconditioning in heterozygous connexin43-deficient mice. Am J Physiol Heart Circ Physiol 283:H1740–H1742. https://doi.org/10.1152/ajpheart.00442.2002

    Article  CAS  PubMed  Google Scholar 

  47. Shimura D, Shaw RM (2022) GJA1-20k and mitochondrial dynamics. Front Physiol 13:867358. https://doi.org/10.3389/fphys.2022.867358

    Article  PubMed  PubMed Central  Google Scholar 

  48. Stein LR, Imai S (2012) The dynamic regulation of NAD metabolism in mitochondria. Trends Endocrinol Metab 23:420–428. https://doi.org/10.1016/j.tem.2012.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tonnesen PT, Hjortbak MV, Lassen TR, Seefeldt JM, Bötker HE, Jespersen NR (2021) Myocardial salvage by succinate dehydrogenase inhibition in ischemia-reperfusion injury depends on diabetes stage in rats. Mol Cell Biochem 476:2675–2684. https://doi.org/10.1007/s11010-021-04108-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Turunen M, Olsson J, Dallner G (2004) Metabolism and function of coenzyme Q. Biochim Biophys Acta 1660:171–199. https://doi.org/10.1016/j.bbamem.2003.11.012

    Article  CAS  PubMed  Google Scholar 

  51. Valls-Lacalle L, Barba I, Miro-Casas E, Alburquerque-Bejar JJ, Ruiz-Meana M, Fuertes-Agudo M, Rodriguez-Sinovas A, Garcia-Dorado D (2016) Succinate dehydrogenase inhibition with malonate during reperfusion reduces infarct size by preventing mitochondrial permeability transition. Cardiovasc Res 109:374–384. https://doi.org/10.1093/cvr/cvv279

    Article  CAS  PubMed  Google Scholar 

  52. Valls-Lacalle L, Barba I, Miro-Casas E, Ruiz-Meana M, Rodriguez-Sinovas A, Garcia-Dorado D (2018) Selective inhibition of succinate dehydrogenase in reperfused myocardium with intracoronary malonate reduces infarct size. Sci Rep 8:2442. https://doi.org/10.1038/s41598-018-20866-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Valls-Lacalle L, Negre-Pujol C, Rodriguez C, Varona S, Valera-Canellas A, Consegal M, Martinez-Gonzalez J, Rodriguez-Sinovas A (2019) Opposite effects of moderate and extreme Cx43 deficiency in conditional Cx43-deficient mice on angiotensin II-induced cardiac fibrosis. Cells 8:1299. https://doi.org/10.3390/cells8101299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang N, De Vuyst E, Ponsaerts R, Boengler K, Palacios-Prado N, Wauman J, Lai CP, De Bock M, Decrock E, Bol M, Vinken M, Rogiers V, Tavernier J, Evans WH, Naus CC, Bukauskas FF, Sipido KR, Heusch G, Schulz R, Bultynck G, Leybaert L (2013) Selective inhibition of Cx43 hemichannels by Gap19 and its impact on myocardial ischemia/reperfusion injury. Basic Res Cardiol 108:309. https://doi.org/10.1007/s00395-012-0309-x

    Article  CAS  PubMed  Google Scholar 

  55. Wang Y, Oxer D, Hekimi S (2015) Mitochondrial function and lifespan of mice with controlled ubiquinone biosynthesis. Nat Commun 6:6393. https://doi.org/10.1038/ncomms7393

    Article  CAS  PubMed  Google Scholar 

  56. Wojtovich AP, Brookes PS (2008) The endogenous mitochondrial complex II inhibitor malonate regulates mitochondrial ATP-sensitive potassium channels: implications for ischemic preconditioning. Biochim Biophys Acta 1777:882–889. https://doi.org/10.1016/j.bbabio.2008.03.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yin Z, Burger N, Kula-Alwar D, Aksentijevic D, Bridges HR, Prag HA, Grba DN, Viscomi C, James AM, Mottahedin A, Krieg T, Murphy MP, Hirst J (2021) Structural basis for a complex I mutation that blocks pathological ROS production. Nat Commun 12:707. https://doi.org/10.1038/s41467-021-20942-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhou Q, Wang Y, Lu Z, He C, Li L, You M, Wang L, Cao T, Zhao Y, Li Q, Mou A, Shu W, He H, Zhao Z, Liu D, Zhu Z, Gao P, Yan Z (2023) Cx43 acts as a mitochondrial calcium regulator that promotes obesity by inducing the polarization of macrophages in adipose tissue. Cell Signal 105:110606. https://doi.org/10.1016/j.cellsig.2023.110606

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Spanish Ministry of Economy and Competitiveness.

Funding

Instituto de Salud Carlos III (grants PI23/00260, PI22/00513, PI17/01397 and CIBERCV) and the Spanish Society of Cardiology (Proyectos de la FEC para Investigación Básica en Cardiología 2018, Sociedad Española de Cardiología), and was cofinanced by the European Regional Development Fund (ERDF–FEDER, a way to build Europe). Antonio Rodríguez-Sinovas has a consolidated Miguel Servet contract.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study. ARS and IFG designed the experiments. MC, EMC and MRM performed studies in isolated mitochondria (ROS production, CoQ analysis), including data collection and analysis. IB and MC performed and analyzed 1H-NMR spectroscopy. MC, JI, BB and CR prepared, collected the data and analyzed those studies addressing ischemia–reperfusion injury in isolated hearts. EMC, FGG and CLC analyzed expression of proteins by conventional Western blot. EMC, FGG and LRU conducted NAD/NADH analysis. ARS, IFG, MRM, BB, CR and JI guided data interpretation. ARS secured funding. The first draft was written by ARS and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Ignacio Ferreira-González or Antonio Rodríguez-Sinovas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The present study conforms to the NIH Guide for the Care and Use of Laboratory Animals (NIH publications Nº. 85–23, revised 1996), and was performed in accordance with European legislation (Directive 2010/63/UE). The study was approved by the Ethics Committee of our institution (CEEA 22.20).

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 585 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Consegal, M., Miró-Casas, E., Barba, I. et al. Connexin 43 modulates reverse electron transfer in cardiac mitochondria from inducible knock-out Cx43Cre−ER(T)/fl mice by altering the coenzyme Q pool. Basic Res Cardiol (2024). https://doi.org/10.1007/s00395-024-01052-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-024-01052-2

Keywords

Navigation