当前位置: X-MOL 学术Rev. Chem. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Synthesis and applications of TiO2/ZnO hybrid nanostructures by ZnO deposition on TiO2 nanotubes using electrochemical processes
Reviews in Chemical Engineering ( IF 4.7 ) Pub Date : 2022-08-30 , DOI: 10.1515/revce-2021-0105
Pedro José Navarro-Gázquez 1 , Maria J. Muñoz-Portero 1 , Encarna Blasco-Tamarit 1 , Rita Sánchez-Tovar 2 , José García-Antón 1
Affiliation  

In recent years, TiO2/ZnO hybrid nanostructures have been attracting the interest of the scientific community due to their excellent photoelectrochemical properties. The main advantage of TiO2/ZnO hybrid nanostructures over other photocatalysts based on semiconductor materials lies in their ability to form heterojunctions in which the valence and conduction bands of both semiconductors are intercalated. This factor produces a decrease in the band gap and the recombination rate and an increase in the light absorption range. The aim of this review is to perform a revision of the main methods to synthesise TiO2/ZnO hybrid nanostructures by ZnO deposition on TiO2 nanotubes using electrochemical processes. Electrochemical synthesis methods provide an easy, fast, and highly efficient route to carry out the synthesis of nanostructures such as nanowires, nanorods, nanotubes, etc. They allow us to control the stoichiometry, thickness and structure mainly by controlling the voltage, time, temperature, composition of the electrolyte, and concentration of monomers. In addition, a study of the most promising applications for TiO2/ZnO hybrid nanostructures has been carried out. In this review, the applications of dye-sensitised solar cell, photoelectrocatalytic degradation of organic compounds, photoelectrochemical water splitting, gas sensors, and lithium-ion batteries have been highlighted.

中文翻译:

使用电化学工艺在 TiO2 纳米管上沉积 ZnO 制备 TiO2/ZnO 杂化纳米结构及其应用

近年来,钛2/ZnO杂化纳米结构由于其优异的光电化学性能而引起了科学界的兴趣。二氧化钛的主要优点2/ZnO 杂化纳米结构优于其他基于半导体材料的光催化剂,在于它们能够形成异质结,其中两种半导体的价带和导带都插入其中。该因素导致带隙和复合率的降低以及光吸收范围的增加。本综述的目的是对合成二氧化钛的主要方法进行修订2/ZnO杂化纳米结构通过在TiO上沉积ZnO2使用电化学过程的纳米管。电化学合成方法为进行纳米线、纳米棒、纳米管等纳米结构的合成提供了一种简单、快速、高效的途径。它们允许我们主要通过控制电压、时间、温度来控制化学计量、厚度和结构,电解质的组成和单体的浓度。此外,研究了 TiO 最有前途的应用2/ZnO杂化纳米结构已经进行。在这篇综述中,重点介绍了染料敏化太阳能电池、有机化合物的光电催化降解、光电化学水分解、气体传感器和锂离子电池的应用。
更新日期:2022-08-30
down
wechat
bug